|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152 |
- # MobileNetV3 Description
-
-
- MobileNetV3 is tuned to mobile phone CPUs through a combination of hardware- aware network architecture search (NAS) complemented by the NetAdapt algorithm and then subsequently improved through novel architecture advances.Nov 20, 2019.
-
- [Paper](https://arxiv.org/pdf/1905.02244) Howard, Andrew, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang et al. "Searching for mobilenetv3." In Proceedings of the IEEE International Conference on Computer Vision, pp. 1314-1324. 2019.
-
- # Model architecture
-
- The overall network architecture of MobileNetV3 is show below:
-
- [Link](https://arxiv.org/pdf/1905.02244)
-
- # Dataset
-
- Dataset used: [imagenet](http://www.image-net.org/)
-
- - Dataset size: ~125G, 1.2W colorful images in 1000 classes
- - Train: 120G, 1.2W images
- - Test: 5G, 50000 images
- - Data format: RGB images.
- - Note: Data will be processed in src/dataset.py
-
-
- # Features
-
-
- # Environment Requirements
-
- - Hardware(Ascend/GPU)
- - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- - Framework
- - [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
- - For more information, please check the resources below:
- - [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- - [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
-
-
- # Script description
-
- ## Script and sample code
-
- ```python
- ├── MobilenetV3
- ├── Readme.md
- ├── scripts
- │ ├──run_train.sh
- │ ├──run_eval.sh
- ├── src
- │ ├──config.py
- │ ├──dataset.py
- │ ├──luanch.py
- │ ├──lr_generator.py
- │ ├──mobilenetV2.py
- ├── train.py
- ├── eval.py
- ```
-
- ## Training process
-
- ### Usage
-
- - Ascend: sh run_train.sh Ascend [DEVICE_NUM] [SERVER_IP(x.x.x.x)] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]
- - GPU: sh run_trian.sh GPU [DEVICE_NUM] [VISIABLE_DEVICES(0,1,2,3,4,5,6,7)] [DATASET_PATH]
-
- ### Launch
-
- ```
- # training example
- Ascend: sh run_train.sh Ascend 8 192.168.0.1 0,1,2,3,4,5,6,7 ~/imagenet/train/
- GPU: sh run_train.sh GPU 8 0,1,2,3,4,5,6,7 ~/imagenet/train/
- ```
-
- ### Result
-
- Training result will be stored in the example path. Checkpoints will be stored at `. /checkpoint` by default, and training log will be redirected to `./train/train.log` like followings.
-
- ```
- epoch: [ 0/200], step:[ 624/ 625], loss:[5.258/5.258], time:[140412.236], lr:[0.100]
- epoch time: 140522.500, per step time: 224.836, avg loss: 5.258
- epoch: [ 1/200], step:[ 624/ 625], loss:[3.917/3.917], time:[138221.250], lr:[0.200]
- epoch time: 138331.250, per step time: 221.330, avg loss: 3.917
- ```
-
- ## Eval process
-
- ### Usage
-
- - Ascend: sh run_infer.sh Ascend [DATASET_PATH] [CHECKPOINT_PATH]
- - GPU: sh run_infer.sh GPU [DATASET_PATH] [CHECKPOINT_PATH]
-
- ### Launch
-
- ```
- # infer example
- Ascend: sh run_infer.sh Ascend ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt
- GPU: sh run_infer.sh GPU ~/imagenet/val/ ~/train/mobilenet-200_625.ckpt
- ```
-
- > checkpoint can be produced in training process.
-
- ### Result
-
- Inference result will be stored in the example path, you can find result like the followings in `val.log`.
-
- ```
- result: {'acc': 0.71976314102564111} ckpt=/path/to/checkpoint/mobilenet-200_625.ckpt
- ```
-
- # Model description
-
- ## Performance
-
- ### Training Performance
-
- | Parameters | MobilenetV3 | |
- | -------------------------- | ---------------------------------------------------------- | ------------------------- |
- | Model Version | | large |
- | Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G | NV SMX2 V100-32G |
- | uploaded Date | 05/06/2020 | 05/06/2020 |
- | MindSpore Version | 0.3.0 | 0.3.0 |
- | Dataset | ImageNet | ImageNet |
- | Training Parameters | src/config.py | src/config.py |
- | Optimizer | Momentum | Momentum |
- | Loss Function | SoftmaxCrossEntropy | SoftmaxCrossEntropy |
- | outputs | | |
- | Loss | | 1.913 |
- | Accuracy | | ACC1[77.57%] ACC5[92.51%] |
- | Total time | | |
- | Params (M) | | |
- | Checkpoint for Fine tuning | | |
- | Model for inference | | |
-
- #### Inference Performance
-
- | Parameters | | | |
- | -------------------------- | ----------------------------- | ------------------------- | -------------------- |
- | Model Version | V1 | | |
- | Resource | Huawei 910 | NV SMX2 V100-32G | Huawei 310 |
- | uploaded Date | 05/06/2020 | 05/22/2020 | |
- | MindSpore Version | 0.2.0 | 0.2.0 | 0.2.0 |
- | Dataset | ImageNet, 1.2W | ImageNet, 1.2W | ImageNet, 1.2W |
- | batch_size | | 130(8P) | |
- | outputs | | | |
- | Accuracy | | ACC1[75.43%] ACC5[92.51%] | |
- | Speed | | | |
- | Total time | | | |
- | Model for inference | | | |
-
-
- # ModelZoo Homepage
- [Link](https://gitee.com/mindspore/mindspore/tree/master/mindspore/model_zoo)
|