You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_datasets_imagenet.py 6.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. import mindspore.dataset.transforms.vision.c_transforms as vision
  16. import mindspore.dataset.transforms.c_transforms as data_trans
  17. import pytest
  18. import mindspore.dataset as ds
  19. from mindspore import log as logger
  20. DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
  21. SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
  22. def test_case_repeat():
  23. """
  24. a simple repeat operation.
  25. """
  26. logger.info("Test Simple Repeat")
  27. # define parameters
  28. repeat_count = 2
  29. # apply dataset operations
  30. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
  31. data1 = data1.repeat(repeat_count)
  32. num_iter = 0
  33. for item in data1.create_dict_iterator(): # each data is a dictionary
  34. # in this example, each dictionary has keys "image" and "label"
  35. logger.info("image is: {}".format(item["image"]))
  36. logger.info("label is: {}".format(item["label"]))
  37. num_iter += 1
  38. logger.info("Number of data in data1: {}".format(num_iter))
  39. def test_case_shuffle():
  40. """
  41. a simple shuffle operation.
  42. """
  43. logger.info("Test Simple Shuffle")
  44. # define parameters
  45. buffer_size = 8
  46. seed = 10
  47. # apply dataset operations
  48. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
  49. ds.config.set_seed(seed)
  50. data1 = data1.shuffle(buffer_size=buffer_size)
  51. for item in data1.create_dict_iterator():
  52. logger.info("image is: {}".format(item["image"]))
  53. logger.info("label is: {}".format(item["label"]))
  54. def test_case_0():
  55. """
  56. Test Repeat then Shuffle
  57. """
  58. logger.info("Test Repeat then Shuffle")
  59. # define parameters
  60. repeat_count = 2
  61. buffer_size = 7
  62. seed = 9
  63. # apply dataset operations
  64. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
  65. data1 = data1.repeat(repeat_count)
  66. ds.config.set_seed(seed)
  67. data1 = data1.shuffle(buffer_size=buffer_size)
  68. num_iter = 0
  69. for item in data1.create_dict_iterator(): # each data is a dictionary
  70. # in this example, each dictionary has keys "image" and "label"
  71. logger.info("image is: {}".format(item["image"]))
  72. logger.info("label is: {}".format(item["label"]))
  73. num_iter += 1
  74. logger.info("Number of data in data1: {}".format(num_iter))
  75. def test_case_0_reverse():
  76. """
  77. Test Shuffle then Repeat
  78. """
  79. logger.info("Test Shuffle then Repeat")
  80. # define parameters
  81. repeat_count = 2
  82. buffer_size = 10
  83. seed = 9
  84. # apply dataset operations
  85. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
  86. ds.config.set_seed(seed)
  87. data1 = data1.shuffle(buffer_size=buffer_size)
  88. data1 = data1.repeat(repeat_count)
  89. num_iter = 0
  90. for item in data1.create_dict_iterator(): # each data is a dictionary
  91. # in this example, each dictionary has keys "image" and "label"
  92. logger.info("image is: {}".format(item["image"]))
  93. logger.info("label is: {}".format(item["label"]))
  94. num_iter += 1
  95. logger.info("Number of data in data1: {}".format(num_iter))
  96. def test_case_3():
  97. """
  98. Test Map
  99. """
  100. logger.info("Test Map Rescale and Resize, then Shuffle")
  101. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
  102. # define data augmentation parameters
  103. rescale = 1.0 / 255.0
  104. shift = 0.0
  105. resize_height, resize_width = 224, 224
  106. # define map operations
  107. decode_op = vision.Decode()
  108. rescale_op = vision.Rescale(rescale, shift)
  109. # resize_op = vision.Resize(resize_height, resize_width,
  110. # InterpolationMode.DE_INTER_LINEAR) # Bilinear mode
  111. resize_op = vision.Resize((resize_height, resize_width))
  112. # apply map operations on images
  113. data1 = data1.map(input_columns=["image"], operations=decode_op)
  114. data1 = data1.map(input_columns=["image"], operations=rescale_op)
  115. data1 = data1.map(input_columns=["image"], operations=resize_op)
  116. # # apply ont-hot encoding on labels
  117. num_classes = 4
  118. one_hot_encode = data_trans.OneHot(num_classes) # num_classes is input argument
  119. data1 = data1.map(input_columns=["label"], operations=one_hot_encode)
  120. #
  121. # # apply Datasets
  122. buffer_size = 100
  123. seed = 10
  124. batch_size = 2
  125. ds.config.set_seed(seed)
  126. data1 = data1.shuffle(buffer_size=buffer_size) # 10000 as in imageNet train script
  127. data1 = data1.batch(batch_size, drop_remainder=True)
  128. num_iter = 0
  129. for item in data1.create_dict_iterator(): # each data is a dictionary
  130. # in this example, each dictionary has keys "image" and "label"
  131. logger.info("image is: {}".format(item["image"]))
  132. logger.info("label is: {}".format(item["label"]))
  133. num_iter += 1
  134. logger.info("Number of data in data1: {}".format(num_iter))
  135. if __name__ == '__main__':
  136. logger.info('===========now test Repeat============')
  137. # logger.info('Simple Repeat')
  138. test_case_repeat()
  139. logger.info('\n')
  140. logger.info('===========now test Shuffle===========')
  141. # logger.info('Simple Shuffle')
  142. test_case_shuffle()
  143. logger.info('\n')
  144. # Note: cannot work with different shapes, hence not for image
  145. # logger.info('===========now test Batch=============')
  146. # # logger.info('Simple Batch')
  147. # test_case_batch()
  148. # logger.info('\n')
  149. logger.info('===========now test case 0============')
  150. # logger.info('Repeat then Shuffle')
  151. test_case_0()
  152. logger.info('\n')
  153. logger.info('===========now test case 0 reverse============')
  154. # # logger.info('Shuffle then Repeat')
  155. test_case_0_reverse()
  156. logger.info('\n')
  157. # logger.info('===========now test case 1============')
  158. # # logger.info('Repeat with Batch')
  159. # test_case_1()
  160. # logger.info('\n')
  161. # logger.info('===========now test case 2============')
  162. # # logger.info('Batch with Shuffle')
  163. # test_case_2()
  164. # logger.info('\n')
  165. # for image augmentation only
  166. logger.info('===========now test case 3============')
  167. logger.info('Map then Shuffle')
  168. test_case_3()
  169. logger.info('\n')