You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_ops.py 41 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """ test ops """
  16. import functools
  17. import numpy as np
  18. from mindspore import ops
  19. from mindspore.ops import functional as F
  20. from mindspore.ops import operations as P
  21. from mindspore.ops.operations import _grad_ops as G
  22. import mindspore.ops.composite as C
  23. import mindspore.nn as nn
  24. from mindspore import Tensor
  25. from mindspore.common import dtype as mstype
  26. from ..ut_filter import non_graph_engine
  27. from ....mindspore_test_framework.mindspore_test import mindspore_test
  28. from ....mindspore_test_framework.pipeline.forward.compile_forward\
  29. import (pipeline_for_compile_forward_ge_graph_for_case_by_case_config,
  30. pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  31. from ....mindspore_test_framework.pipeline.gradient.compile_gradient\
  32. import pipeline_for_compile_grad_ge_graph_for_case_by_case_config
  33. class InputBackward(nn.Cell):
  34. def __init__(self, network):
  35. super(InputBackward, self).__init__()
  36. self.network = network
  37. self.network.set_train()
  38. self.grad = C.grad_all_with_sens
  39. def construct(self, x1, x2, x3, sens):
  40. return self.grad(self.network)(x1, x2, x3, sens)
  41. class NetForTupleInput(nn.Cell):
  42. def __init__(self, op):
  43. super(NetForTupleInput, self).__init__()
  44. self.op = op
  45. def construct(self, x1, x2):
  46. return self.op((x1, x2))
  47. class StridedSlicessdNet(nn.Cell):
  48. def __init__(self):
  49. super(StridedSlicessdNet, self).__init__()
  50. self.rank = P.Rank()
  51. def construct(self, x1):
  52. return P.StridedSlice(1, 1, 0, self.rank(x1), 0)(x1, (0, 0), (0, 0), (1, 1))
  53. class NetForConcat(nn.Cell):
  54. def __init__(self):
  55. super(NetForConcat, self).__init__()
  56. self.concat = P.Concat()
  57. def construct(self, x1):
  58. return self.concat((x1, x1))
  59. class NetForConcat1(nn.Cell):
  60. def __init__(self):
  61. super(NetForConcat1, self).__init__()
  62. self.concat = P.Concat()
  63. def construct(self, x1, x2):
  64. return self.concat((x1, x2))
  65. class NetForPackInput(nn.Cell):
  66. def __init__(self, op):
  67. super(NetForPackInput, self).__init__()
  68. self.op = op
  69. self.mul = P.Mul()
  70. def construct(self, *args):
  71. t = ()
  72. for i in range(len(args)):
  73. t = t + (self.mul(args[i], args[i]),)
  74. return self.op(t)
  75. class NetForUnpackInput(nn.Cell):
  76. def __init__(self, op):
  77. super(NetForUnpackInput, self).__init__()
  78. self.op = op
  79. self.mul = P.Mul()
  80. def construct(self, x1):
  81. return self.op((self.mul(x1, x1)))
  82. class NetForFlatten(nn.Cell):
  83. def __init__(self):
  84. super(NetForFlatten, self).__init__()
  85. self.flatten = P.Flatten()
  86. def construct(self, x, y):
  87. return self.flatten(x) + y
  88. class NetForFlatten0D(nn.Cell):
  89. def __init__(self):
  90. super(NetForFlatten0D, self).__init__()
  91. self.flatten = P.Flatten()
  92. def construct(self, x):
  93. return self.flatten(x)
  94. class ArgmaxNet(nn.Cell):
  95. def __init__(self):
  96. super(ArgmaxNet, self).__init__()
  97. self.argmax = P.Argmax(axis=1)
  98. def construct(self, input):
  99. return self.argmax(input)
  100. class ArgminNet(nn.Cell):
  101. def __init__(self):
  102. super(ArgminNet, self).__init__()
  103. self.argmin = P.Argmin(axis=1)
  104. def construct(self, input):
  105. return self.argmin(input)
  106. class CumSumNet(nn.Cell):
  107. def __init__(self):
  108. super(CumSumNet, self).__init__()
  109. self.cumsum = P.CumSum()
  110. self.axis = 1
  111. def construct(self, input):
  112. return self.cumsum(input, self.axis)
  113. class SummaryNet(nn.Cell):
  114. def __init__(self,):
  115. super(SummaryNet, self).__init__()
  116. self.s = P.ScalarSummary()
  117. self.add = P.TensorAdd()
  118. def construct(self, x, y):
  119. self.s("x1", x)
  120. return self.add(x, y)
  121. test_case_math_ops = [
  122. ('Neg', {
  123. 'block': P.Neg(),
  124. 'desc_inputs': [[1, 3, 4, 4]],
  125. 'desc_bprop': [[1, 3, 4, 4]]}),
  126. ('Sub', {
  127. 'block': P.Sub(),
  128. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  129. 'desc_bprop': [[2, 3, 3, 5]]}),
  130. ('TensorAdd', {
  131. 'block': P.TensorAdd(),
  132. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  133. 'desc_bprop': [[2, 3, 3, 5]]}),
  134. ('Mul0', {
  135. 'block': P.Mul(),
  136. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  137. 'desc_bprop': [[2, 3, 3, 5]]}),
  138. ('Mul1', {
  139. 'block': P.Mul(),
  140. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  141. 'desc_bprop': [[2, 3, 3, 5]]}),
  142. ('Mul2', {
  143. 'block': P.Mul(),
  144. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  145. 'desc_bprop': [[2, 3, 3, 5]],
  146. 'skip': ['backward']}),
  147. ('Mul3', {
  148. 'block': P.Mul(),
  149. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  150. 'desc_bprop': [[2, 3, 3, 5]],
  151. 'skip': ['backward']}),
  152. ('Mul4', {
  153. 'block': P.Mul(),
  154. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  155. 'desc_bprop': [[2, 3, 3, 5]],
  156. 'skip': ['backward']}),
  157. ('Add0', {
  158. 'block': P.TensorAdd(),
  159. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  160. 'desc_bprop': [[2, 3, 3, 5]]}),
  161. ('Add1', {
  162. 'block': P.TensorAdd(),
  163. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  164. 'desc_bprop': [[2, 3, 3, 5]],
  165. 'skip': ['backward']}),
  166. ('Add2', {
  167. 'block': P.TensorAdd(),
  168. 'desc_inputs': [[2, 3, 3, 5], [3, 5]],
  169. 'desc_bprop': [[2, 3, 3, 5]],
  170. 'skip': ['backward']}),
  171. ('Add3', {
  172. 'block': P.TensorAdd(),
  173. 'desc_inputs': [[2, 3, 1, 1], [2, 3, 3, 5]],
  174. 'desc_bprop': [[2, 3, 3, 5]],
  175. 'skip': ['backward']}),
  176. ('Add4', {
  177. 'block': P.TensorAdd(),
  178. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 1, 1]],
  179. 'desc_bprop': [[2, 3, 3, 5]],
  180. 'skip': ['backward']}),
  181. ('Minimum', {
  182. 'block': P.Minimum(),
  183. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  184. 'desc_bprop': [[2, 3, 3, 5]]}),
  185. ('Pow_0', {
  186. 'block': P.Pow(),
  187. 'desc_const': [2.0],
  188. 'desc_inputs': [[2, 3, 3, 5]],
  189. 'desc_bprop': [[2, 3, 3, 5]]}),
  190. ('Pow_1', {
  191. 'block': P.Pow(),
  192. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  193. 'desc_bprop': [[2, 3, 3, 5]]}),
  194. ('Exp', {
  195. 'block': P.Exp(),
  196. 'desc_inputs': [[2, 3]],
  197. 'desc_bprop': [[2, 3]]}),
  198. ('Floor', {
  199. 'block': P.Floor(),
  200. 'desc_inputs': [[2, 512, 56, 56]],
  201. 'desc_bprop': [[2, 512, 56, 56]],
  202. 'skip': ['backward']}),
  203. ('ACos', {
  204. 'block': P.ACos(),
  205. 'desc_inputs': [[2, 3]],
  206. 'desc_bprop': [[2, 3]]}),
  207. ('Acosh', {
  208. 'block': P.Acosh(),
  209. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16))],
  210. 'skip': ['backward']}),
  211. ('Sin', {
  212. 'block': P.Sin(),
  213. 'desc_inputs': [[2, 3]],
  214. 'desc_bprop': [[2, 3]]}),
  215. ('Reciprocal', {
  216. 'block': P.Reciprocal(),
  217. 'desc_inputs': [[2, 3, 3, 5]],
  218. 'desc_bprop': [[2, 3, 3, 5]]}),
  219. ('Minimum_0', {
  220. 'block': P.Minimum(),
  221. 'desc_inputs': [[2, 3, 3, 5], [3, 3, 5]],
  222. 'desc_bprop': [[2, 3, 3, 5]]}),
  223. ('Maximum', {
  224. 'block': P.Maximum(),
  225. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  226. 'desc_bprop': [[2, 3, 3, 5]]}),
  227. ('Maximum_0', {
  228. 'block': P.Maximum(),
  229. 'desc_inputs': [[3, 5], [2, 3, 3, 5]],
  230. 'desc_bprop': [[2, 3, 3, 5]]}),
  231. ('MaximumGrad', {
  232. 'block': G.MaximumGrad(),
  233. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  234. 'skip': ['backward']}),
  235. ('MinimumGrad', {
  236. 'block': G.MinimumGrad(),
  237. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5], [2, 3, 3, 5]],
  238. 'skip': ['backward']}),
  239. ('StridedSlice', {
  240. 'block': P.StridedSlice(),
  241. 'desc_const': [(0, 1, 2, 1),
  242. (2, 3, 3, 4),
  243. (1, 1, 1, 1)],
  244. 'desc_inputs': [[2, 3, 3, 5]],
  245. 'desc_bprop': [[2, 2, 1, 3]]}),
  246. ('Slice_1', {
  247. 'block': P.Slice(),
  248. 'desc_const': [(0, 1, 2, 1),
  249. (1, 1, 1, 2)],
  250. 'desc_inputs': [[2, 3, 3, 5]],
  251. 'desc_bprop': [[1, 1, 1, 2]]}),
  252. ('StridedSliceGrad', {
  253. 'block': G.StridedSliceGrad(),
  254. 'desc_const': [(64, 1, 1024),
  255. (0, 1, 0),
  256. (64, 2, 1024),
  257. (1, 1, 1)],
  258. 'desc_inputs': [[64, 128, 1024]],
  259. 'skip': ['backward']}),
  260. ('RandomChoiceWithMask', {
  261. 'block': P.RandomChoiceWithMask(256),
  262. 'desc_inputs': [Tensor(np.random.rand(24000, 4).astype(np.bool_))],
  263. 'desc_bprop': [[256,4], [256,4]],
  264. 'skip': ['backward']}),
  265. ('LessEqual', {
  266. 'block': P.LessEqual(),
  267. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  268. Tensor(np.random.rand(4).astype(np.float16))],
  269. 'skip': ['backward']}),
  270. ('Less', {
  271. 'block': P.Less(),
  272. 'desc_inputs': [[2, 1, 4, 5], [2, 1, 4, 5]],
  273. 'desc_bprop': [Tensor(np.zeros((2, 1, 4, 5), np.bool_))],
  274. 'skip': ['backward']}),
  275. ('RealDiv_0', {
  276. 'block': P.RealDiv(),
  277. 'desc_const': [Tensor(2048.0), Tensor(0.0)],
  278. 'desc_inputs': [],
  279. 'skip': ['backward']}),
  280. ('RealDiv', {
  281. 'block': P.RealDiv(),
  282. 'desc_inputs': [[4], Tensor(np.ones(4).astype(np.float32))],
  283. 'desc_bprop': [[4]]}),
  284. ('RealDiv_1', {
  285. 'block': P.RealDiv(),
  286. 'desc_inputs': [[512, 1024], [512, 1024]],
  287. 'desc_bprop': [[512, 1024]]}),
  288. ('FloorDiv', {
  289. 'block': P.FloorDiv(),
  290. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  291. Tensor(np.random.rand(4).astype(np.float16))],
  292. 'skip': ['backward']}),
  293. ('FloorMod', {
  294. 'block': P.FloorMod(),
  295. 'desc_inputs': [Tensor(np.random.rand(4).astype(np.float16)),
  296. Tensor(np.random.rand(4).astype(np.float16))],
  297. 'skip': ['backward']}),
  298. ('identity', {
  299. 'block': ops.functional.identity,
  300. 'desc_inputs': [[2, 2]],
  301. 'skip': ['backward']}),
  302. ('MatMul_1', {
  303. 'block': P.MatMul(transpose_a=False, transpose_b=False),
  304. 'desc_inputs': [[1024, 160], [160, 1024]],
  305. 'desc_bprop': [[1024, 1024]]}),
  306. ('MatMul_2', {
  307. 'block': P.MatMul(transpose_a=True, transpose_b=True),
  308. 'desc_inputs': [[160, 1024], [1024, 160]],
  309. 'desc_bprop': [[1024, 1024]]}),
  310. ('Sub', {
  311. 'block': P.Sub(),
  312. 'desc_inputs': [[3], [3]],
  313. 'desc_bprop': [[3]]}),
  314. ('TruncatedNormal', {
  315. 'block': P.TruncatedNormal(),
  316. 'desc_const': [Tensor(np.array([1, 2, 3]))],
  317. 'desc_inputs': [],
  318. 'skip': ['backward'],
  319. 'add_fake_input': True}),
  320. ('Select', {
  321. 'block': P.Select(),
  322. 'desc_inputs': [Tensor(np.array([[True, False, False], [False, True, True]])),
  323. [2, 3], [2, 3]],
  324. 'desc_bprop': [[2, 3]]}),
  325. ('Rank', {
  326. 'block': P.Rank(),
  327. 'desc_inputs': [[2, 3]],
  328. 'skip': ['backward']}),
  329. ('InvertPermutation', {
  330. 'block': P.InvertPermutation(),
  331. 'desc_const': [(0, 3, 1, 2)],
  332. 'desc_inputs': [],
  333. 'skip': ['backward']}),
  334. ('Square', {
  335. 'block': P.Square(),
  336. 'desc_inputs': [[4]],
  337. 'desc_bprop': [[4]]}),
  338. ('Rsqrt', {
  339. 'block': P.Rsqrt(),
  340. 'desc_inputs': [[4]],
  341. 'desc_bprop': [[4]]}),
  342. ('Sqrt', {
  343. 'block': P.Sqrt(),
  344. 'desc_inputs': [[4]],
  345. 'desc_bprop': [[4]]}),
  346. ('RealDiv', {
  347. 'block': P.RealDiv(),
  348. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  349. 'desc_bprop': [[2, 3, 4, 5]]}),
  350. ('Div', {
  351. 'block': P.Div(),
  352. 'desc_inputs': [[4, 5], [2, 3, 4, 5]],
  353. 'desc_bprop': [[2, 3, 4, 5]]}),
  354. ('Equal', {
  355. 'block': P.Equal(),
  356. 'desc_inputs': [[3, 4, 5], [4, 5]],
  357. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  358. ('NotEqual', {
  359. 'block': P.NotEqual(),
  360. 'desc_inputs': [[4, 1], [2, 3, 4, 5]],
  361. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  362. ('NotEqual_0', {
  363. 'block': P.NotEqual(),
  364. 'desc_inputs': [ 1, [2, 3, 4, 5]],
  365. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))],
  366. 'skip': ['backward']}),
  367. ('Greater', {
  368. 'block': P.Greater(),
  369. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  370. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  371. ('GreaterEqual', {
  372. 'block': P.GreaterEqual(),
  373. 'desc_inputs': [[2, 3, 4, 1], [4, 5]],
  374. 'desc_bprop': [Tensor(np.ones((2, 3, 4, 5), np.bool_))]}),
  375. ('LogicalNot', {
  376. 'block': P.LogicalNot(),
  377. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_))],
  378. 'desc_bprop': [Tensor(np.ones((3, 4, 5), np.bool_))]}),
  379. ('LogicalAnd', {
  380. 'block': P.LogicalAnd(),
  381. 'desc_inputs': [Tensor(np.zeros((2, 3, 4), np.bool_)), Tensor(np.ones((1), np.bool_))],
  382. 'desc_bprop': [Tensor(np.zeros((2, 3, 4), np.bool_))]}),
  383. ('LogicalOr', {
  384. 'block': P.LogicalOr(),
  385. 'desc_inputs': [Tensor(np.zeros((3, 4, 5), np.bool_)), Tensor(np.ones((3, 1, 1), np.bool_))],
  386. 'desc_bprop': [Tensor(np.zeros((3, 4, 5), np.bool_))]}),
  387. ('NpuAllocFloatStatus', {
  388. 'block': P.NPUAllocFloatStatus(),
  389. 'desc_inputs': [],
  390. 'add_fack_input': True,
  391. 'fack_input_type': np.float32,
  392. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  393. 'skip': ['backward']}),
  394. ('NpuGetFloatStatus', {
  395. 'block': P.NPUGetFloatStatus(),
  396. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  397. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  398. 'skip': ['backward']}),
  399. ('NpuClearFloatStatus', {
  400. 'block': P.NPUClearFloatStatus(),
  401. 'desc_inputs': [Tensor(np.zeros([8]).astype(np.float32))],
  402. 'desc_bprop': [Tensor(np.zeros([8]).astype(np.float32))],
  403. 'skip': ['backward']}),
  404. ('CheckValid', {
  405. 'block': P.CheckValid(),
  406. 'desc_inputs': [[20000, 4], [3]],
  407. 'desc_bprop': [[20000]],
  408. 'skip': ['backward']}),
  409. ('NMSWithMask', {
  410. 'block': P.NMSWithMask(0.5),
  411. 'desc_inputs': [[128, 5]],
  412. 'desc_bprop': [[128, 5], [128], [128]],
  413. 'skip': ['backward']}),
  414. ('Abs', {
  415. 'block': P.Abs(),
  416. 'desc_inputs': [[4]],
  417. 'desc_bprop': [[4]]}),
  418. ('CumSum', {
  419. 'block': P.CumSum(),
  420. 'desc_const': [0],
  421. 'desc_inputs': [Tensor(np.array([[3, 4],[1, 6]]).astype(np.float16))],
  422. 'desc_bprop': [Tensor(np.array([[3, 4],[4, 10]]).astype(np.float16))]}),
  423. ('ReduceSum_3', {
  424. 'block': P.ReduceSum(),
  425. 'desc_const': [0],
  426. 'desc_inputs': [[3, 2]],
  427. 'desc_bprop': [[2]]}),
  428. ('ReduceSum_4', {
  429. 'block': P.ReduceSum(keep_dims=True),
  430. 'desc_const': [0],
  431. 'desc_inputs': [[3, 2]],
  432. 'desc_bprop': [[1, 2]]}),
  433. ('ReduceSum_5', {
  434. 'block': P.ReduceSum(keep_dims=True),
  435. 'desc_inputs': [[2, 3, 4]],
  436. 'desc_bprop': [[1, 1, 1]]}),
  437. ('ReduceSum_6', {
  438. 'block': P.ReduceSum(),
  439. 'desc_inputs': [[2, 3, 4]],
  440. 'desc_bprop': [[1]]}),
  441. ('Sum_0', {
  442. 'block': P.ReduceSum(),
  443. 'desc_const': [(1,)],
  444. 'desc_inputs': [[3, 2]],
  445. 'desc_bprop': [[3]]}),
  446. ('Sum_1', {
  447. 'block': P.ReduceSum(keep_dims=True),
  448. 'desc_const': [(1,)],
  449. 'desc_inputs': [[3, 2]],
  450. 'desc_bprop': [[3, 1]]}),
  451. ('Sum_2', {
  452. 'block': P.ReduceSum(),
  453. 'desc_const': [(0, 1)],
  454. 'desc_inputs': [[3, 2]],
  455. 'desc_bprop': [[1]]}),
  456. ('Sum_3', {
  457. 'block': P.ReduceSum(),
  458. 'desc_const': [0],
  459. 'desc_inputs': [[3, 2]],
  460. 'desc_bprop': [[2]]}),
  461. ('Sum_4', {
  462. 'block': P.ReduceSum(keep_dims=True),
  463. 'desc_const': [0],
  464. 'desc_inputs': [[3, 2]],
  465. 'desc_bprop': [[1, 2]]}),
  466. ('Sum_5', {
  467. 'block': P.ReduceSum(keep_dims=True),
  468. 'desc_const': [()],
  469. 'desc_inputs': [[2, 3, 4]],
  470. 'desc_bprop': [[1, 1, 1]]}),
  471. ('Sum_6', {
  472. 'block': P.ReduceSum(),
  473. 'desc_const': [()],
  474. 'desc_inputs': [[2, 3, 4]],
  475. 'desc_bprop': [[1]]}),
  476. ('Sign', {
  477. 'block': P.Sign(),
  478. 'desc_inputs': [[3]],
  479. 'desc_bprop': [[3]]}),
  480. ('Round', {
  481. 'block': P.Round(),
  482. 'desc_inputs': [[3]],
  483. 'desc_bprop': [[3]]}),
  484. ('Atan2', {
  485. 'block': P.Atan2(),
  486. 'desc_inputs': [Tensor(np.array([0, 1]).astype(np.float32)),
  487. Tensor(np.array([1, 1]).astype(np.float32))],
  488. 'desc_bprop': [[2]]})
  489. ]
  490. test_case_nn_ops = [
  491. ('BiasAdd', {
  492. 'block': P.BiasAdd(),
  493. 'desc_inputs': [[1, 3, 3, 3], [3]],
  494. 'desc_bprop': [[1, 3, 3, 3]]}),
  495. ('BiasAddGrad', {
  496. 'block': G.BiasAddGrad(),
  497. 'desc_inputs': [[1, 3, 3, 3]],
  498. 'skip': ['backward']}),
  499. ('Gelu', {
  500. 'block': P.Gelu(),
  501. 'desc_inputs': [[1, 3, 4, 4]],
  502. 'desc_bprop': [[1, 3, 4, 4]]}),
  503. ('GeluGrad', {
  504. 'block': G.GeluGrad(),
  505. 'desc_inputs': [[2, 2], [2, 2], [2, 2]],
  506. 'desc_bprop': [[2, 2]],
  507. 'skip': ['backward']}),
  508. ('Tanh', {
  509. 'block': P.Tanh(),
  510. 'desc_inputs': [[1, 3, 4, 4]],
  511. 'desc_bprop': [[1, 3, 4, 4]]}),
  512. ('TanhGrad', {
  513. 'block': G.TanhGrad(),
  514. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  515. 'desc_bprop': [[1, 3, 4, 4]],
  516. 'skip': ['backward']}),
  517. ('ReLU', {
  518. 'block': P.ReLU(),
  519. 'desc_inputs': [[1, 3, 4, 4]],
  520. 'desc_bprop': [[1, 3, 4, 4]]}),
  521. ('ReLU6', {
  522. 'block': P.ReLU6(),
  523. 'desc_inputs': [[1, 3, 4, 4]],
  524. 'desc_bprop': [[1, 3, 4, 4]]}),
  525. ('ReLUGrad', {
  526. 'block': G.ReluGrad(),
  527. 'desc_inputs': [[1, 3, 4, 4], [1, 3, 4, 4]],
  528. 'skip': ['backward']}),
  529. ('Elu', {
  530. 'block': P.Elu(),
  531. 'desc_inputs': [[2, 3, 4]],
  532. 'desc_bprop': [[2, 3, 4]]}),
  533. ('EluGrad', {
  534. 'block': G.EluGrad(),
  535. 'desc_inputs': [[2, 3, 4], [2, 3, 4]],
  536. 'desc_bprop': [[2, 3, 4]],
  537. 'skip': ['backward']}),
  538. ('Sigmoid', {
  539. 'block': P.Sigmoid(),
  540. 'desc_inputs': [[1, 3, 4, 4]],
  541. 'desc_bprop': [[1, 3, 4, 4]]}),
  542. ('MaxPool', {
  543. 'block': P.MaxPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  544. 'desc_inputs': [[100, 3, 28, 28]],
  545. 'desc_bprop': [[100, 3, 14, 14]]}),
  546. ('MaxPoolGrad', {
  547. 'block': G.MaxPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  548. 'desc_inputs': [[3, 4, 6, 6], [3, 4, 3, 3], [3, 4, 3, 3]],
  549. 'desc_bprop': [[3, 4, 6, 6]],
  550. 'skip': ['backward']}),
  551. ('AvgPool', {
  552. 'block': P.AvgPool(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  553. 'desc_inputs': [[100, 3, 28, 28]],
  554. 'desc_bprop': [[100, 3, 14, 14]]}),
  555. ('AvgPoolGrad', {
  556. 'block': G.AvgPoolGrad(ksize=(2, 2), strides=(2, 2), padding="VALID"),
  557. 'desc_const': [(3, 4, 6, 6)],
  558. 'const_first': True,
  559. 'desc_inputs': [[3, 4, 6, 6]],
  560. 'desc_bprop': [[3, 4, 6, 6]],
  561. 'skip': ['backward']}),
  562. ('MaxPoolWithArgmax', {
  563. 'block': P.MaxPoolWithArgmax(ksize=2, strides=2),
  564. 'desc_inputs': [[128, 32, 32, 64]],
  565. 'desc_bprop': [[128, 32, 8, 16], [128, 32, 8, 16]]}),
  566. ('SoftmaxCrossEntropyWithLogits', {
  567. 'block': P.SoftmaxCrossEntropyWithLogits(),
  568. 'desc_inputs': [[1, 10], [1, 10]],
  569. 'desc_bprop': [[1], [1, 10]],
  570. 'skip': ['backward_exec']}),
  571. ('Flatten', {
  572. 'block': P.Flatten(),
  573. 'desc_inputs': [[128, 32, 32, 64]],
  574. 'desc_bprop': [[128 * 32 * 8 * 16]]}),
  575. ('LogSoftmax', {
  576. 'block': P.LogSoftmax(),
  577. 'desc_inputs': [[64, 2]],
  578. 'desc_bprop': [[160, 30522]]}),
  579. ('LogSoftmaxGrad', {
  580. 'block': G.LogSoftmaxGrad(),
  581. 'desc_inputs': [[16, 1234], [16, 1234]],
  582. 'desc_bprop': [[64, 2]],
  583. 'skip': ['backward']}),
  584. ('LayerNorm', {
  585. 'block': P.LayerNorm(),
  586. 'desc_inputs': [[2, 16], [16], [16]],
  587. 'desc_bprop': [[2, 16], [2, 16], [2, 16]]}),
  588. ('LayerNormGrad', {
  589. 'block': G.LayerNormGrad(),
  590. 'desc_inputs': [[2, 16], [2, 16], [2, 16], [2, 16], [16]],
  591. 'desc_bprop': [[2, 16], [16], [16]],
  592. 'skip': ['backward']}),
  593. ('FusedBatchNorm', {
  594. 'block': P.FusedBatchNorm(),
  595. 'desc_inputs': [[128, 64, 32, 64], [64], [64], [64], [64]],
  596. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  597. 'skip': []}),
  598. ('FusedBatchNormGrad', {
  599. 'block': G.FusedBatchNormGrad(),
  600. 'desc_inputs': [[128, 64, 32, 64], [128, 64, 32, 64], [64], [64], [64]],
  601. 'desc_bprop': [[128, 64, 32, 64], [64], [64], [64], [64]],
  602. 'skip': ['backward']}),
  603. ('BatchNorm', {
  604. 'block': P.BatchNorm(),
  605. 'desc_inputs': [[128, 64, 32, 32], [64], [64], [64], [64]],
  606. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  607. 'skip': []}),
  608. ('BatchNormGrad', {
  609. 'block': G.BatchNormGrad(),
  610. 'desc_inputs': [[128, 64, 32, 32], [128, 64, 32, 32], [64], [64], [64], [64]],
  611. 'desc_bprop': [[128, 64, 32, 32], [64], [64], [64], [64]],
  612. 'skip': ['backward']}),
  613. ('ApplyMomentum', {
  614. 'block': P.ApplyMomentum(),
  615. 'desc_inputs': [[128, 32, 32, 64], [128, 32, 32, 64],
  616. [32, 32, 64], [32, 32, 64], [32, 32, 64]],
  617. 'desc_bprop': [[128, 32, 32, 64]],
  618. 'skip': ['backward']}),
  619. ('TopK', {
  620. 'block': P.TopK(),
  621. 'desc_const': [5],
  622. 'desc_inputs': [[20, 20, 10]],
  623. 'desc_bprop': [[20, 20, 5]],
  624. 'skip': ['backward']}),
  625. ('GatherV2_0', {
  626. 'block': P.GatherV2(),
  627. 'desc_const': [0],
  628. 'desc_inputs': [[3, 1, 2], Tensor(np.array([0, 1]).astype(np.int32))],
  629. 'desc_bprop': [[2, 1, 2]]}),
  630. ('GatherV2_1', {
  631. 'block': P.GatherV2(),
  632. 'desc_const': [2],
  633. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  634. 'desc_bprop': [[3, 1, 2]]}),
  635. ('GatherV2_2', {
  636. 'block': P.GatherV2(),
  637. 'desc_const': [0],
  638. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  639. 'desc_bprop': [[3, 2, 1, 3]]}),
  640. ('GatherV2_3', {
  641. 'block': P.GatherV2(),
  642. 'desc_const': [2],
  643. 'desc_inputs': [[3, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  644. 'desc_bprop': [[3, 1, 3, 2]]}),
  645. ('GatherV2_4', {
  646. 'block': P.GatherV2(),
  647. 'desc_const': [1],
  648. 'desc_inputs': [[32, 5, 1024], Tensor(np.array([3]).astype(np.int32))],
  649. 'desc_bprop': [[32, 1, 1024]]}),
  650. ('GatherV2_5', {
  651. 'block': P.GatherV2(),
  652. 'desc_const': [-1],
  653. 'desc_inputs': [[3, 1, 3], Tensor(np.array([0, 1]).astype(np.int32))],
  654. 'desc_bprop': [[3, 1, 2]]}),
  655. ('GatherV2_6', {
  656. 'block': P.GatherV2(),
  657. 'desc_const': [0],
  658. 'desc_inputs': [[1152], Tensor(np.array(10).astype(np.int32))],
  659. 'desc_bprop': [Tensor(np.array(10).astype(np.float32))]}),
  660. ('UnsortedSegmentSum', {
  661. 'block': P.UnsortedSegmentSum(),
  662. 'desc_const': [1280],
  663. 'desc_inputs': [[1280,1024], Tensor(np.ones(1280).astype(np.int32))],
  664. 'desc_bprop': [[8192,1024]],
  665. 'skip': ['backward']}),
  666. ('UnsortedSegmentSum_1', {
  667. 'block': P.UnsortedSegmentSum(),
  668. 'desc_const': [4],
  669. 'desc_inputs': [[3, 2, 1, 3], Tensor(np.array([[0, 1], [0, 1], [0, 1]]).astype(np.int32))],
  670. 'desc_bprop': [[4, 1, 3]],
  671. 'skip': ['backward']}),
  672. ('DropoutGenMask', {
  673. 'block': P.DropoutGenMask(),
  674. 'desc_const': [(2, 2), Tensor(0.5, mstype.float32)],
  675. 'desc_inputs': [],
  676. 'desc_bprop': [Tensor(np.ones(1).astype(np.int8))],
  677. 'skip': ['backward']}),
  678. ('DropoutDoMask', {
  679. 'block': P.DropoutDoMask(),
  680. 'desc_const': [Tensor(0.5)],
  681. 'desc_inputs': [[64, 12, 128, 128], Tensor(np.ones(1572864).astype(np.uint8))],
  682. 'desc_bprop': [[64, 12, 128, 128]]}),
  683. ('Dropout', {
  684. 'block': nn.Dropout(0.5),
  685. 'desc_inputs': [[64, 12, 128, 128]],
  686. 'desc_bprop': [[64, 12, 128, 128]]}),
  687. ('ReduceMean0', {
  688. 'block': P.ReduceMean(),
  689. 'desc_const': [(2,)],
  690. 'desc_inputs': [[3, 2, 2]],
  691. 'desc_bprop': [[3, 2]]}),
  692. ('ReduceMean1', {
  693. 'block': P.ReduceMean(),
  694. 'desc_const': [2],
  695. 'desc_inputs': [[3, 2, 2]],
  696. 'desc_bprop': [[3, 2]]}),
  697. ('All', {
  698. 'block': P.ReduceAll(),
  699. 'desc_const': [(1,)],
  700. 'desc_inputs': [Tensor(np.ones([3, 2]).astype(np.bool_))],
  701. 'desc_bprop': [[3]],
  702. 'skip': ['backward']}),
  703. ('DescConst', {
  704. 'block': Tensor(np.array([2], np.float32)),
  705. 'desc_inputs': [],
  706. 'desc_bprop': [[1]],
  707. 'skip': ['backward'],
  708. 'add_fake_input': True}),
  709. ('Fill', {
  710. 'block': P.Fill(),
  711. 'desc_const': [mstype.float32, (2, 3), 1.0],
  712. 'desc_inputs': [],
  713. 'desc_bprop': [[2, 3]],
  714. 'skip': ['backward'],
  715. 'add_fake_input': True}),
  716. ('OnesLike', {
  717. 'block': P.OnesLike(),
  718. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  719. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  720. }),
  721. ('ZerosLike', {
  722. 'block': P.ZerosLike(),
  723. 'desc_inputs': [Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32))],
  724. 'desc_bprop': [Tensor(np.array([[1, 1], [1, 1]]).astype(np.int32))]
  725. }),
  726. ('Softmax', {
  727. 'block': P.Softmax(),
  728. 'desc_inputs': [[5, 5]],
  729. 'desc_bprop': [[5, 5]]}),
  730. ('DepthwiseConv2dNative_1', {
  731. 'block': P.DepthwiseConv2dNative(3, (3, 3), pad_mode="pad", pad=1, stride=2),
  732. 'desc_inputs': [[10, 32, 32, 32], [3, 32, 3, 3]],
  733. 'desc_bprop': [[10, 30, 16, 16]]}),
  734. ('DepthwiseConv2dNative_2', {
  735. 'block': P.DepthwiseConv2dNative(1, (3, 3), pad_mode="same", pad=0, stride=1),
  736. 'desc_inputs': [[2592, 2048, 4, 4], [1, 2048, 3, 3]],
  737. 'desc_bprop': [[2592, 2048, 2, 2]]}),
  738. ('SigmoidCrossEntropyWithLogits', {
  739. 'block': P.SigmoidCrossEntropyWithLogits(),
  740. 'desc_inputs': [[128, 10], [128, 10]],
  741. 'desc_bprop': [[128, 10]]}),
  742. ('Pad', {
  743. 'block': P.Pad(((1, 2), (2, 3))),
  744. 'desc_inputs': [[7, 7]],
  745. 'desc_bprop': [[10, 12]]}),
  746. ('BinaryCrossEntropy', {
  747. 'block': P.BinaryCrossEntropy(),
  748. 'desc_inputs': [[1, 2, 3], [1, 2, 3], [1, 2, 3]],
  749. 'desc_bprop': []}),
  750. ('SparseApplyAdagrad', {
  751. 'block': P.SparseApplyAdagrad(0.5),
  752. 'desc_inputs': [[3, 3], [3, 3], [3, 3], Tensor(np.ones((3,), np.int32))],
  753. 'desc_bprop': [3, 3],
  754. 'skip': ['backward']}),
  755. ('Flatten_1', {
  756. 'block': NetForFlatten(),
  757. 'desc_inputs': [Tensor(np.ones([2, 3, 4]).astype(np.int32)), Tensor(np.ones([2, 12]).astype(np.int32))],
  758. 'desc_bprop': [Tensor(np.ones([2, 12]).astype(np.int32))],
  759. 'skip': ['backward']}),
  760. ('Flatten_2', {
  761. 'block': NetForFlatten(),
  762. 'desc_inputs': [Tensor(np.ones([8]).astype(np.int32)), Tensor(np.ones([8, 3]).astype(np.int32))],
  763. 'desc_bprop': [Tensor(np.ones([8, 3]).astype(np.int32))],
  764. 'skip': ['backward']}),
  765. ('ArgmaxNet', {
  766. 'block': ArgmaxNet(),
  767. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  768. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  769. 'skip': ['backward']}),
  770. ('ArgminNet', {
  771. 'block': ArgminNet(),
  772. 'desc_inputs': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  773. 'desc_bprop': [Tensor(np.array([[128, 32, 32, 64],[128, 32, 32, 64]]).astype(np.float16))],
  774. 'skip': ['backward']}),
  775. ('CumSumNet', {
  776. 'block': CumSumNet(),
  777. 'desc_const': [0],
  778. 'desc_inputs': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))],
  779. 'desc_bprop': [Tensor(np.array([[3, 4, 6, 10],[1, 6, 7, 9],[4, 3, 8, 7],[1, 3, 7, 9]]).astype(np.float16))]}),
  780. ('OneHot', {
  781. 'block': P.OneHot(),
  782. 'desc_const': [3, Tensor(1.0, mstype.float32), Tensor(0.0, mstype.float32)],
  783. 'desc_inputs': [Tensor(np.array([64]).astype(np.int32))],
  784. 'desc_bprop': [[64, 2]]}),
  785. ('ReduceProd_0', {
  786. 'block': P.ReduceProd(),
  787. 'desc_const': [0],
  788. 'desc_inputs': [[3, 2]],
  789. 'desc_bprop': [[2]]}),
  790. ('ReduceProd_1', {
  791. 'block': P.ReduceProd(keep_dims=True),
  792. 'desc_const': [0],
  793. 'desc_inputs': [[3, 2]],
  794. 'desc_bprop': [[1, 2]]}),
  795. ('CumProd', {
  796. 'block': P.CumProd(),
  797. 'desc_const': [0],
  798. 'desc_inputs': [[3, 2]],
  799. 'desc_bprop': [[3, 2]]}),
  800. ('ApplyFtrl', {
  801. 'block': P.ApplyFtrl(),
  802. 'desc_const': [0.001, 0.0, 0.0, -0.5],
  803. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  804. 'desc_bprop': [3, 3],
  805. 'skip': ['backward']}),
  806. ('ApplyRMSProp', {
  807. 'block': P.ApplyRMSProp(),
  808. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  809. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3]],
  810. 'desc_bprop': [3, 3],
  811. 'skip': ['backward']}),
  812. ('ApplyCenteredRMSProp', {
  813. 'block': P.ApplyCenteredRMSProp(),
  814. 'desc_const': [0.9, 0.0, 1e-10, 0.001],
  815. 'desc_inputs': [[3, 3], [3, 3], [3, 3], [3, 3], [3, 3]],
  816. 'desc_bprop': [3, 3],
  817. 'skip': ['backward']}),
  818. ]
  819. test_case_array_ops = [
  820. ('SpaceToDepth', {
  821. 'block': P.SpaceToDepth(2),
  822. 'desc_inputs': [[1, 3, 2, 2]],
  823. 'desc_bprop': [[1, 12, 1, 1]]}),
  824. ('DepthToSpace', {
  825. 'block': P.DepthToSpace(2),
  826. 'desc_inputs': [[1, 12, 1, 1]],
  827. 'desc_bprop': [[1, 3, 2, 2]]}),
  828. ('Split', {
  829. 'block': P.Split(1, 2),
  830. 'desc_inputs': [Tensor(np.array([[1, 1, 1, 1], [2, 2, 2, 2]]))],
  831. 'skip': ['backward']}),
  832. ('Argmax', {
  833. 'block': P.Argmax(),
  834. 'desc_inputs': [[128, 32, 32, 64]],
  835. 'desc_bprop': [0],
  836. 'skip': ['backward']}),
  837. ('Argmin', {
  838. 'block': P.Argmin(),
  839. 'desc_inputs': [[128, 32, 32, 64]],
  840. 'desc_bprop': [1],
  841. 'skip': ['backward']}),
  842. ('ArgMaxWithValue', {
  843. 'block': P.ArgMaxWithValue(),
  844. 'desc_inputs': [[128, 32, 32, 64]],
  845. 'desc_bprop': [[1], [1]],
  846. 'skip': ['backward']}),
  847. ('ArgMinWithValue', {
  848. 'block': P.ArgMinWithValue(),
  849. 'desc_inputs': [[128, 32, 32, 64]],
  850. 'desc_bprop': [[1], [1]],
  851. 'skip': ['backward']}),
  852. ('Transpose_dim3', {
  853. 'block': P.Transpose(),
  854. 'desc_const': [(0, 2, 1)],
  855. 'desc_inputs': [[1, 2, 3]],
  856. 'desc_bprop': [[1, 3, 2]]}),
  857. ('Transpose_dim4', {
  858. 'block': P.Transpose(),
  859. 'desc_const': [(0, 1, 2, 3)],
  860. 'desc_inputs': [[1, 2, 3, 4]],
  861. 'desc_bprop': [[1, 2, 4, 3]]}),
  862. ('AddN', {
  863. 'block': NetForTupleInput(P.AddN()),
  864. 'desc_inputs': [[2, 3, 3, 5], [2, 3, 3, 5]],
  865. 'desc_bprop': [[2, 3, 3, 5]],
  866. 'skip': ['backward']}),
  867. ('Shape', {
  868. 'block': P.Shape(),
  869. 'desc_inputs': [[3, 3, 2, 2]],
  870. 'skip': ['backward']}),
  871. ('Reshape', {
  872. 'block': P.Reshape(),
  873. 'desc_const': [(64,)],
  874. 'desc_inputs': [[64, 1]],
  875. 'desc_bprop': [[64]]}),
  876. ('Cast', {
  877. 'block': P.Cast(),
  878. 'desc_const': [mstype.int32],
  879. 'desc_inputs': [[2, 3, 4, 5]],
  880. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  881. ('ExpandDims', {
  882. 'block': P.ExpandDims(),
  883. 'desc_const': [0],
  884. 'desc_inputs': [[2, 2]],
  885. 'desc_bprop': [[1, 2, 2]]}),
  886. ('ExpandDims_1', {
  887. 'block': P.ExpandDims(),
  888. 'desc_const': [-1],
  889. 'desc_inputs': [[2, 2]],
  890. 'desc_bprop': [[2, 2, 1]]}),
  891. ('Squeeze', {
  892. 'block': P.Squeeze(2),
  893. 'desc_inputs': [[3, 2, 1]],
  894. 'desc_bprop': [[3, 2]]}),
  895. ('Squeeze_0', {
  896. 'block': P.Squeeze(),
  897. 'desc_inputs': [[3, 1, 2, 1]],
  898. 'desc_bprop': [[3, 2]]}),
  899. ('Squeeze_1', {
  900. 'block': P.Squeeze(),
  901. 'desc_inputs': [[1, 1, 1, 1]],
  902. 'desc_bprop': [1.0],
  903. 'skip': ['backward']}),
  904. ('Squeeze_2', {
  905. 'block': P.Squeeze((2, 3)),
  906. 'desc_inputs': [[3, 2, 1, 1]],
  907. 'desc_bprop': [[3, 2]]}),
  908. ('Size', {
  909. 'block': P.Size(),
  910. 'desc_inputs': [[2, 3, 5]],
  911. 'skip': ['backward']}),
  912. ('Tile_0', {
  913. 'block': P.Tile(),
  914. 'desc_const': [(1, 2)],
  915. 'desc_inputs': [[64, 1]],
  916. 'desc_bprop': [[64, 2]]}),
  917. ('Tile_1', {
  918. 'block': P.Tile(),
  919. 'desc_const': [(1, 1)],
  920. 'desc_inputs': [[64, 1]],
  921. 'desc_bprop': [[64, 1]]}),
  922. ('Tile_2', {
  923. 'block': P.Tile(),
  924. 'desc_const': [(2, 1, 1, 2)],
  925. 'desc_inputs': [[2, 2, 2]],
  926. 'desc_bprop': [[2, 2, 2, 4]]}),
  927. ('ConcatV2_0', {
  928. 'block': P.Concat(),
  929. 'desc_inputs': [
  930. (Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)),
  931. Tensor(np.array([[0, 1], [2, 1]]).astype(np.int32)))],
  932. 'desc_bprop': [[4, 2]]}),
  933. ('ConcatV2_1', {
  934. 'block': P.Concat(axis=2),
  935. 'desc_inputs': [(Tensor(np.array([[[0, 1, 2]], [[2, 1, 2]]]).astype(np.int32)),
  936. Tensor(np.array([[[0, 1]], [[2, 1]]]).astype(np.int32)))],
  937. 'desc_bprop': [[2, 1, 5]]}),
  938. ('ConcatV2_2', {
  939. 'block': NetForConcat(),
  940. 'desc_inputs': [[2, 2]],
  941. 'desc_bprop': [[4, 2]]}),
  942. ('ConcatV2_3', {
  943. 'block': NetForConcat1(),
  944. 'desc_inputs': [[2, 2], [2, 2]],
  945. 'desc_bprop': [[4, 2]]}),
  946. ('ConcatV2_4', {
  947. 'block': P.Concat(axis=0),
  948. 'desc_inputs': [
  949. (Tensor(np.ones((3, 2, 3), np.float32)),
  950. Tensor(np.ones((5, 2, 3), np.float32)),
  951. Tensor(np.ones((6, 2, 3), np.float32)))],
  952. 'desc_bprop': [[14, 2, 3]]}),
  953. ('ConcatV2_5', {
  954. 'block': P.Concat(axis=-1),
  955. 'desc_inputs': [(Tensor(np.array([1], np.float32)),
  956. Tensor(np.array([1], np.float32)),
  957. Tensor(np.array([1], np.float32)))],
  958. 'desc_bprop': [[3,]]}),
  959. ('Pack_0', {
  960. 'block': NetForPackInput(P.Pack()),
  961. 'desc_inputs':[[2, 2], [2, 2], [2, 2]],
  962. 'desc_bprop':[[3, 2, 2]],
  963. }),
  964. ('Pack_1', {
  965. 'block': NetForPackInput(P.Pack(axis=-2)),
  966. 'desc_inputs':[[3, 2, 3], [3, 2, 3], [3, 2, 3]],
  967. 'desc_bprop':[[3, 2, 3, 3]],
  968. }),
  969. ('Pack_2', {
  970. 'block': NetForPackInput(P.Pack()),
  971. 'desc_inputs':[[2, 2]],
  972. 'desc_bprop':[[2, 2, 2]],
  973. }),
  974. ('Pack_3', {
  975. 'block': NetForPackInput(P.Pack()),
  976. 'desc_inputs':[[128, 128], [128, 128]],
  977. 'desc_bprop':[[2, 128, 128]],
  978. }),
  979. ('Unpack_0', {
  980. 'block': NetForUnpackInput(P.Unpack(axis=0)),
  981. 'desc_inputs':[[2, 4]],
  982. 'desc_bprop':[[4], [4]],
  983. }),
  984. ('Unpack_1', {
  985. 'block': NetForUnpackInput(P.Unpack(axis=-1)),
  986. 'desc_inputs':[Tensor(np.array([[1, 1, 1]], np.float32))],
  987. 'desc_bprop':[[1], [1], [1]],
  988. }),
  989. ('Diag', {
  990. 'block': P.Diag(),
  991. 'desc_inputs': [[4]],
  992. 'desc_bprop': [[4, 4]],
  993. }),
  994. ('DiagPart', {
  995. 'block': P.DiagPart(),
  996. 'desc_inputs': [[4, 4]],
  997. 'desc_bprop': [[4]],
  998. }),
  999. ('SpaceToBatch_1', {
  1000. 'block': P.SpaceToBatch(2, [[0, 0], [0, 0]]),
  1001. 'desc_inputs': [[1, 3, 2, 2]],
  1002. 'desc_bprop': [[4, 3, 1, 1]],
  1003. }),
  1004. ('SpaceToBatch_2', {
  1005. 'block': P.SpaceToBatch(2, [[1, 1], [0, 4]]),
  1006. 'desc_inputs': [[1, 3, 2, 2]],
  1007. 'desc_bprop': [[4, 3, 2, 4]],
  1008. }),
  1009. ('BatchToSpace_1', {
  1010. 'block': P.BatchToSpace(2, [[0, 0], [0, 0]]),
  1011. 'desc_inputs': [[4, 3, 1, 1]],
  1012. 'desc_bprop': [[1, 3, 2, 2]],
  1013. }),
  1014. ('BatchToSpace_2', {
  1015. 'block': P.BatchToSpace(2, [[0, 0], [0, 1]]),
  1016. 'desc_inputs': [[4, 3, 1, 1]],
  1017. 'desc_bprop': [[1, 3, 2, 1]],
  1018. }),
  1019. ]
  1020. test_case_other_ops = [
  1021. ('ScalarLog', {
  1022. 'block': F.scalar_log,
  1023. 'desc_const': [0.0],
  1024. 'desc_inputs': [],
  1025. 'desc_bprop': [1],
  1026. 'skip': ['backward']}),
  1027. ('BoundingBoxEncode', {
  1028. 'block': P.BoundingBoxEncode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0)),
  1029. 'desc_inputs': [[256, 4], [256, 4]],
  1030. 'desc_bprop': [[256, 4]],
  1031. 'skip': ['backward']}),
  1032. ('BoundingBoxDecode', {
  1033. 'block': P.BoundingBoxDecode(means=(0.0, 0.0, 0.0, 0.0), stds=(1.0, 1.0, 1.0, 1.0), max_shape=(768, 1280)),
  1034. 'desc_inputs': [[256, 4], [256, 4]],
  1035. 'desc_bprop': [[256, 4]],
  1036. 'skip': ['backward']}),
  1037. ('GatherNd', {
  1038. 'block': P.GatherNd(),
  1039. 'desc_inputs': (Tensor(np.ones((1, 3, 6, 6), np.float32)),
  1040. Tensor(np.ones((2, 4), np.int32))),
  1041. 'desc_bprop': [[2]]}),
  1042. ('ScatterNdUpdate', {
  1043. 'block': P.ScatterNdUpdate(),
  1044. 'desc_inputs': (Tensor(np.ones((2, 3), np.float32)),
  1045. Tensor(np.ones((2, 2), np.int32)),
  1046. Tensor(np.ones((2,), np.float32))),
  1047. 'desc_bprop': [[2, 3]]}),
  1048. ('ScatterNd', {
  1049. 'block': P.ScatterNd(),
  1050. 'desc_const': [(3, 3)],
  1051. 'desc_inputs': (Tensor(np.ones((2, 2), np.int32)),
  1052. Tensor(np.ones((2,), np.int32))),
  1053. 'desc_bprop': [[3, 3]]}),
  1054. ('SmoothL1Loss', {
  1055. 'block': P.SmoothL1Loss(),
  1056. 'desc_inputs': [[256, 4], [256, 4]],
  1057. 'desc_bprop': [[256, 4]]}),
  1058. ('IOU', {
  1059. 'block': P.IOU(),
  1060. 'desc_inputs': [Tensor(np.ones((256, 4), np.float16)), Tensor(np.ones((128, 4), np.float16))],
  1061. 'desc_bprop': [[128, 256]]}),
  1062. ('Summary', {
  1063. 'block': SummaryNet(),
  1064. 'desc_inputs': [Tensor(np.array([1.1]).astype(np.float32)),
  1065. Tensor(np.array([1.2]).astype(np.float32))],
  1066. 'skip': ['backward']}),
  1067. ]
  1068. test_case_lists = [test_case_nn_ops, test_case_math_ops, test_case_array_ops, test_case_other_ops]
  1069. test_case = functools.reduce(lambda x, y: x + y, test_case_lists)
  1070. # use -k to select certain testcast
  1071. # pytest tests/python/ops/test_ops.py::test_backward -k LayerNorm
  1072. test_exec_case = test_case
  1073. test_backward_exec_case = filter(lambda x: 'skip' not in x[1] or
  1074. 'backward' not in x[1]['skip'], test_case)
  1075. import mindspore.context as context
  1076. @non_graph_engine
  1077. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config)
  1078. def test_exec():
  1079. context.set_context(mode=context.GRAPH_MODE)
  1080. return test_exec_case
  1081. @mindspore_test(pipeline_for_compile_grad_ge_graph_for_case_by_case_config)
  1082. def test_backward_exec():
  1083. context.set_context(mode=context.GRAPH_MODE)
  1084. return test_backward_exec_case
  1085. raise_set = [
  1086. ('Cast_Error', {
  1087. 'block': (P.Cast(), {'exception': TypeError}),
  1088. 'desc_const': [mstype.int32],
  1089. 'desc_inputs': ['wrong input'],
  1090. 'desc_bprop': [Tensor(np.ones((2, 3, 3, 5)).astype(np.int32))]}),
  1091. ('Maximum_Error', {
  1092. 'block': (P.Maximum(), {'exception': TypeError}),
  1093. 'desc_const': [(1, 2, 3)],
  1094. 'desc_inputs': [[2, 3, 3, 5]],
  1095. 'desc_bprop': [[2, 3, 3, 5]]}),
  1096. ('Shape_error', {
  1097. 'block': (P.Shape(), {'exception': TypeError}),
  1098. 'desc_inputs': [(64, 1)],
  1099. 'desc_bprop': [[64]]}),
  1100. ('Flatten_Error', {
  1101. 'block': (NetForFlatten0D(), {'exception': ValueError}),
  1102. 'desc_inputs': [Tensor(np.array(0).astype(np.int32))],
  1103. 'desc_bprop': [Tensor(np.array(0).astype(np.int32))]}),
  1104. ]
  1105. @mindspore_test(pipeline_for_compile_forward_ge_graph_for_case_by_case_config_exception)
  1106. def test_check_exception():
  1107. return raise_set