|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384 |
- # Copyright 2019-2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- import numpy as np
- import pytest
-
- import mindspore.context as context
- import mindspore.nn as nn
- from mindspore import Tensor
- from mindspore.ops import operations as P
-
-
- class Slice(nn.Cell):
- def __init__(self):
- super(Slice, self).__init__()
- self.slice = P.Slice()
-
- def construct(self, x):
- return self.slice(x, (0, 1, 0), (2, 1, 3))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_slice():
- x = Tensor(
- np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float32))
- expect = [[[2., -2., 2.]],
- [[4., -4., 4.]]]
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- slice_op = Slice()
- output = slice_op(x)
- assert (output.asnumpy() == expect).all()
-
-
- class SliceNet(nn.Cell):
- def __init__(self):
- super(SliceNet, self).__init__()
- self.slice = P.Slice()
-
- def construct(self, x):
- return self.slice(x, (0, 11, 0, 0), (32, 7, 224, 224))
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_slice_4d():
- x_np = np.random.randn(32, 24, 224, 224).astype(np.float32)
- output_np = x_np[:, 11:18, :, :]
-
- x_ms = Tensor(x_np)
- net = SliceNet()
- output_ms = net(x_ms)
-
- assert (output_ms.asnumpy() == output_np).all()
-
-
- @pytest.mark.level0
- @pytest.mark.platform_x86_gpu_training
- @pytest.mark.env_onecard
- def test_slice_float64():
- x = Tensor(
- np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float64))
- expect = np.array([[[2., -2., 2.]],
- [[4., -4., 4.]]]).astype(np.float64)
-
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- slice_op = Slice()
- output = slice_op(x)
- assert (output.asnumpy() == expect).all()
|