You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_slice.py 2.6 kB

5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384
  1. # Copyright 2019-2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. class Slice(nn.Cell):
  22. def __init__(self):
  23. super(Slice, self).__init__()
  24. self.slice = P.Slice()
  25. def construct(self, x):
  26. return self.slice(x, (0, 1, 0), (2, 1, 3))
  27. @pytest.mark.level0
  28. @pytest.mark.platform_x86_gpu_training
  29. @pytest.mark.env_onecard
  30. def test_slice():
  31. x = Tensor(
  32. np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float32))
  33. expect = [[[2., -2., 2.]],
  34. [[4., -4., 4.]]]
  35. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  36. slice_op = Slice()
  37. output = slice_op(x)
  38. assert (output.asnumpy() == expect).all()
  39. class SliceNet(nn.Cell):
  40. def __init__(self):
  41. super(SliceNet, self).__init__()
  42. self.slice = P.Slice()
  43. def construct(self, x):
  44. return self.slice(x, (0, 11, 0, 0), (32, 7, 224, 224))
  45. @pytest.mark.level0
  46. @pytest.mark.platform_x86_gpu_training
  47. @pytest.mark.env_onecard
  48. def test_slice_4d():
  49. x_np = np.random.randn(32, 24, 224, 224).astype(np.float32)
  50. output_np = x_np[:, 11:18, :, :]
  51. x_ms = Tensor(x_np)
  52. net = SliceNet()
  53. output_ms = net(x_ms)
  54. assert (output_ms.asnumpy() == output_np).all()
  55. @pytest.mark.level0
  56. @pytest.mark.platform_x86_gpu_training
  57. @pytest.mark.env_onecard
  58. def test_slice_float64():
  59. x = Tensor(
  60. np.array([[[1, -1, 1], [2, -2, 2]], [[3, -3, 3], [4, -4, 4]], [[5, -5, 5], [6, -6, 6]]]).astype(np.float64))
  61. expect = np.array([[[2., -2., 2.]],
  62. [[4., -4., 4.]]]).astype(np.float64)
  63. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  64. slice_op = Slice()
  65. output = slice_op(x)
  66. assert (output.asnumpy() == expect).all()