You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

lenet.py 1.8 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """LeNet."""
  16. import mindspore.nn as nn
  17. class LeNet5(nn.Cell):
  18. """
  19. Lenet network
  20. Args:
  21. num_class (int): Num classes. Default: 10.
  22. Returns:
  23. Tensor, output tensor
  24. Examples:
  25. >>> LeNet(num_class=10)
  26. """
  27. def __init__(self, num_class=10, channel=1):
  28. super(LeNet5, self).__init__()
  29. self.num_class = num_class
  30. self.conv1 = nn.Conv2d(channel, 6, 5, pad_mode='valid')
  31. self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid')
  32. self.fc1 = nn.Dense(16 * 5 * 5, 120)
  33. self.fc2 = nn.Dense(120, 84)
  34. self.fc3 = nn.Dense(84, self.num_class)
  35. self.relu = nn.ReLU()
  36. self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2)
  37. self.flatten = nn.Flatten()
  38. def construct(self, x):
  39. x = self.conv1(x)
  40. x = self.relu(x)
  41. x = self.max_pool2d(x)
  42. x = self.conv2(x)
  43. x = self.relu(x)
  44. x = self.max_pool2d(x)
  45. x = self.flatten(x)
  46. x = self.fc1(x)
  47. x = self.relu(x)
  48. x = self.fc2(x)
  49. x = self.relu(x)
  50. x = self.fc3(x)
  51. return x