You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_random_sharpness.py 13 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing RandomSharpness op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset as ds
  20. import mindspore.dataset.transforms.py_transforms
  21. import mindspore.dataset.vision.py_transforms as F
  22. import mindspore.dataset.vision.c_transforms as C
  23. from mindspore import log as logger
  24. from util import visualize_list, visualize_one_channel_dataset, diff_mse, save_and_check_md5, \
  25. config_get_set_seed, config_get_set_num_parallel_workers
  26. DATA_DIR = "../data/dataset/testImageNetData/train/"
  27. MNIST_DATA_DIR = "../data/dataset/testMnistData"
  28. GENERATE_GOLDEN = False
  29. def test_random_sharpness_py(degrees=(0.7, 0.7), plot=False):
  30. """
  31. Test RandomSharpness python op
  32. """
  33. logger.info("Test RandomSharpness python op")
  34. # Original Images
  35. data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  36. transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  37. F.Resize((224, 224)),
  38. F.ToTensor()])
  39. ds_original = data.map(operations=transforms_original, input_columns="image")
  40. ds_original = ds_original.batch(512)
  41. for idx, (image, _) in enumerate(ds_original.create_tuple_iterator(output_numpy=True)):
  42. if idx == 0:
  43. images_original = np.transpose(image, (0, 2, 3, 1))
  44. else:
  45. images_original = np.append(images_original,
  46. np.transpose(image, (0, 2, 3, 1)),
  47. axis=0)
  48. # Random Sharpness Adjusted Images
  49. data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  50. py_op = F.RandomSharpness()
  51. if degrees is not None:
  52. py_op = F.RandomSharpness(degrees)
  53. transforms_random_sharpness = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  54. F.Resize((224, 224)),
  55. py_op,
  56. F.ToTensor()])
  57. ds_random_sharpness = data.map(operations=transforms_random_sharpness, input_columns="image")
  58. ds_random_sharpness = ds_random_sharpness.batch(512)
  59. for idx, (image, _) in enumerate(ds_random_sharpness.create_tuple_iterator(output_numpy=True)):
  60. if idx == 0:
  61. images_random_sharpness = np.transpose(image, (0, 2, 3, 1))
  62. else:
  63. images_random_sharpness = np.append(images_random_sharpness,
  64. np.transpose(image, (0, 2, 3, 1)),
  65. axis=0)
  66. num_samples = images_original.shape[0]
  67. mse = np.zeros(num_samples)
  68. for i in range(num_samples):
  69. mse[i] = diff_mse(images_random_sharpness[i], images_original[i])
  70. logger.info("MSE= {}".format(str(np.mean(mse))))
  71. if plot:
  72. visualize_list(images_original, images_random_sharpness)
  73. def test_random_sharpness_py_md5():
  74. """
  75. Test RandomSharpness python op with md5 comparison
  76. """
  77. logger.info("Test RandomSharpness python op with md5 comparison")
  78. original_seed = config_get_set_seed(5)
  79. original_num_parallel_workers = config_get_set_num_parallel_workers(1)
  80. # define map operations
  81. transforms = [
  82. F.Decode(),
  83. F.RandomSharpness((20.0, 25.0)),
  84. F.ToTensor()
  85. ]
  86. transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)
  87. # Generate dataset
  88. data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  89. data = data.map(operations=transform, input_columns=["image"])
  90. # check results with md5 comparison
  91. filename = "random_sharpness_py_01_result.npz"
  92. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  93. # Restore configuration
  94. ds.config.set_seed(original_seed)
  95. ds.config.set_num_parallel_workers(original_num_parallel_workers)
  96. def test_random_sharpness_c(degrees=(1.6, 1.6), plot=False):
  97. """
  98. Test RandomSharpness cpp op
  99. """
  100. print(degrees)
  101. logger.info("Test RandomSharpness cpp op")
  102. # Original Images
  103. data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  104. transforms_original = [C.Decode(),
  105. C.Resize((224, 224))]
  106. ds_original = data.map(operations=transforms_original, input_columns="image")
  107. ds_original = ds_original.batch(512)
  108. for idx, (image, _) in enumerate(ds_original.create_tuple_iterator(output_numpy=True)):
  109. if idx == 0:
  110. images_original = image
  111. else:
  112. images_original = np.append(images_original,
  113. image,
  114. axis=0)
  115. # Random Sharpness Adjusted Images
  116. data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  117. c_op = C.RandomSharpness()
  118. if degrees is not None:
  119. c_op = C.RandomSharpness(degrees)
  120. transforms_random_sharpness = [C.Decode(),
  121. C.Resize((224, 224)),
  122. c_op]
  123. ds_random_sharpness = data.map(operations=transforms_random_sharpness, input_columns="image")
  124. ds_random_sharpness = ds_random_sharpness.batch(512)
  125. for idx, (image, _) in enumerate(ds_random_sharpness.create_tuple_iterator(output_numpy=True)):
  126. if idx == 0:
  127. images_random_sharpness = image
  128. else:
  129. images_random_sharpness = np.append(images_random_sharpness,
  130. image,
  131. axis=0)
  132. num_samples = images_original.shape[0]
  133. mse = np.zeros(num_samples)
  134. for i in range(num_samples):
  135. mse[i] = diff_mse(images_random_sharpness[i], images_original[i])
  136. logger.info("MSE= {}".format(str(np.mean(mse))))
  137. if plot:
  138. visualize_list(images_original, images_random_sharpness)
  139. def test_random_sharpness_c_md5():
  140. """
  141. Test RandomSharpness cpp op with md5 comparison
  142. """
  143. logger.info("Test RandomSharpness cpp op with md5 comparison")
  144. original_seed = config_get_set_seed(200)
  145. original_num_parallel_workers = config_get_set_num_parallel_workers(1)
  146. # define map operations
  147. transforms = [
  148. C.Decode(),
  149. C.RandomSharpness((10.0, 15.0))
  150. ]
  151. # Generate dataset
  152. data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  153. data = data.map(operations=transforms, input_columns=["image"])
  154. # check results with md5 comparison
  155. filename = "random_sharpness_cpp_01_result.npz"
  156. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  157. # Restore configuration
  158. ds.config.set_seed(original_seed)
  159. ds.config.set_num_parallel_workers(original_num_parallel_workers)
  160. def test_random_sharpness_c_py(degrees=(1.0, 1.0), plot=False):
  161. """
  162. Test Random Sharpness C and python Op
  163. """
  164. logger.info("Test RandomSharpness C and python Op")
  165. # RandomSharpness Images
  166. data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  167. data = data.map(operations=[C.Decode(), C.Resize((200, 300))], input_columns=["image"])
  168. python_op = F.RandomSharpness(degrees)
  169. c_op = C.RandomSharpness(degrees)
  170. transforms_op = mindspore.dataset.transforms.py_transforms.Compose([lambda img: F.ToPIL()(img.astype(np.uint8)),
  171. python_op,
  172. np.array])
  173. ds_random_sharpness_py = data.map(operations=transforms_op, input_columns="image")
  174. ds_random_sharpness_py = ds_random_sharpness_py.batch(512)
  175. for idx, (image, _) in enumerate(ds_random_sharpness_py.create_tuple_iterator(output_numpy=True)):
  176. if idx == 0:
  177. images_random_sharpness_py = image
  178. else:
  179. images_random_sharpness_py = np.append(images_random_sharpness_py,
  180. image,
  181. axis=0)
  182. data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  183. data = data.map(operations=[C.Decode(), C.Resize((200, 300))], input_columns=["image"])
  184. ds_images_random_sharpness_c = data.map(operations=c_op, input_columns="image")
  185. ds_images_random_sharpness_c = ds_images_random_sharpness_c.batch(512)
  186. for idx, (image, _) in enumerate(ds_images_random_sharpness_c.create_tuple_iterator(output_numpy=True)):
  187. if idx == 0:
  188. images_random_sharpness_c = image
  189. else:
  190. images_random_sharpness_c = np.append(images_random_sharpness_c,
  191. image,
  192. axis=0)
  193. num_samples = images_random_sharpness_c.shape[0]
  194. mse = np.zeros(num_samples)
  195. for i in range(num_samples):
  196. mse[i] = diff_mse(images_random_sharpness_c[i], images_random_sharpness_py[i])
  197. logger.info("MSE= {}".format(str(np.mean(mse))))
  198. if plot:
  199. visualize_list(images_random_sharpness_c, images_random_sharpness_py, visualize_mode=2)
  200. def test_random_sharpness_one_channel_c(degrees=(1.4, 1.4), plot=False):
  201. """
  202. Test Random Sharpness cpp op with one channel
  203. """
  204. logger.info("Test RandomSharpness C Op With MNIST Dataset (Grayscale images)")
  205. c_op = C.RandomSharpness()
  206. if degrees is not None:
  207. c_op = C.RandomSharpness(degrees)
  208. # RandomSharpness Images
  209. data = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  210. ds_random_sharpness_c = data.map(operations=c_op, input_columns="image")
  211. # Original images
  212. data = ds.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  213. images = []
  214. images_trans = []
  215. labels = []
  216. for _, (data_orig, data_trans) in enumerate(zip(data, ds_random_sharpness_c)):
  217. image_orig, label_orig = data_orig
  218. image_trans, _ = data_trans
  219. images.append(image_orig.asnumpy())
  220. labels.append(label_orig.asnumpy())
  221. images_trans.append(image_trans.asnumpy())
  222. if plot:
  223. visualize_one_channel_dataset(images, images_trans, labels)
  224. def test_random_sharpness_invalid_params():
  225. """
  226. Test RandomSharpness with invalid input parameters.
  227. """
  228. logger.info("Test RandomSharpness with invalid input parameters.")
  229. try:
  230. data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  231. data = data.map(operations=[C.Decode(), C.Resize((224, 224)),
  232. C.RandomSharpness(10)], input_columns=["image"])
  233. except TypeError as error:
  234. logger.info("Got an exception in DE: {}".format(str(error)))
  235. assert "tuple" in str(error)
  236. try:
  237. data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  238. data = data.map(operations=[C.Decode(), C.Resize((224, 224)),
  239. C.RandomSharpness((-10, 10))], input_columns=["image"])
  240. except ValueError as error:
  241. logger.info("Got an exception in DE: {}".format(str(error)))
  242. assert "interval" in str(error)
  243. try:
  244. data = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  245. data = data.map(operations=[C.Decode(), C.Resize((224, 224)),
  246. C.RandomSharpness((10, 5))], input_columns=["image"])
  247. except ValueError as error:
  248. logger.info("Got an exception in DE: {}".format(str(error)))
  249. assert "(min,max)" in str(error)
  250. if __name__ == "__main__":
  251. test_random_sharpness_py(plot=True)
  252. test_random_sharpness_py(None, plot=True) # Test with default values
  253. test_random_sharpness_py(degrees=(20.0, 25.0),
  254. plot=True) # Test with degree values that show more obvious transformation
  255. test_random_sharpness_py_md5()
  256. test_random_sharpness_c(plot=True)
  257. test_random_sharpness_c(None, plot=True) # test with default values
  258. test_random_sharpness_c(degrees=[10, 15],
  259. plot=True) # Test with degrees values that show more obvious transformation
  260. test_random_sharpness_c_md5()
  261. test_random_sharpness_c_py(degrees=[1.5, 1.5], plot=True)
  262. test_random_sharpness_c_py(degrees=[1, 1], plot=True)
  263. test_random_sharpness_c_py(degrees=[10, 10], plot=True)
  264. test_random_sharpness_one_channel_c(degrees=[1.7, 1.7], plot=True)
  265. test_random_sharpness_one_channel_c(degrees=None, plot=True) # Test with default values
  266. test_random_sharpness_invalid_params()