You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 11 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. Train CenterNet and get network model files(.ckpt)
  17. """
  18. import os
  19. import argparse
  20. import mindspore.communication.management as D
  21. from mindspore.communication.management import get_rank
  22. from mindspore import context
  23. from mindspore.train.model import Model
  24. from mindspore.context import ParallelMode
  25. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
  26. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  27. from mindspore.nn.optim import Adam
  28. from mindspore import log as logger
  29. from mindspore.common import set_seed
  30. from mindspore.profiler import Profiler
  31. from src.dataset import COCOHP
  32. from src import CenterNetMultiPoseLossCell, CenterNetWithLossScaleCell
  33. from src.utils import LossCallBack, CenterNetPolynomialDecayLR, CenterNetMultiEpochsDecayLR
  34. from src.config import dataset_config, net_config, train_config
  35. _current_dir = os.path.dirname(os.path.realpath(__file__))
  36. parser = argparse.ArgumentParser(description='CenterNet training')
  37. parser.add_argument("--distribute", type=str, default="false", choices=["true", "false"],
  38. help="Run distribute, default is false.")
  39. parser.add_argument("--need_profiler", type=str, default="false", choices=["true", "false"],
  40. help="Profiling to parsing runtime info, default is false.")
  41. parser.add_argument("--profiler_path", type=str, default=" ", help="The path to save profiling data")
  42. parser.add_argument("--epoch_size", type=int, default="1", help="Epoch size, default is 1.")
  43. parser.add_argument("--train_steps", type=int, default=-1, help="Training Steps, default is -1,"
  44. "i.e. run all steps according to epoch number.")
  45. parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
  46. parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
  47. parser.add_argument("--enable_save_ckpt", type=str, default="true", choices=["true", "false"],
  48. help="Enable save checkpoint, default is true.")
  49. parser.add_argument("--do_shuffle", type=str, default="true", choices=["true", "false"],
  50. help="Enable shuffle for dataset, default is true.")
  51. parser.add_argument("--enable_data_sink", type=str, default="true", choices=["true", "false"],
  52. help="Enable data sink, default is true.")
  53. parser.add_argument("--data_sink_steps", type=int, default="1", help="Sink steps for each epoch, default is 1.")
  54. parser.add_argument("--save_checkpoint_path", type=str, default="", help="Save checkpoint path")
  55. parser.add_argument("--load_checkpoint_path", type=str, default="", help="Load checkpoint file path")
  56. parser.add_argument("--save_checkpoint_steps", type=int, default=1000, help="Save checkpoint steps, default is 1000.")
  57. parser.add_argument("--save_checkpoint_num", type=int, default=1, help="Save checkpoint numbers, default is 1.")
  58. parser.add_argument("--mindrecord_dir", type=str, default="",
  59. help="Mindrecord files directory. If is empty, mindrecord format files will be generated"
  60. "based on the original dataset and annotation information. If mindrecord_dir isn't empty,"
  61. "mindrecord_dir will be used inplace of data_dir and anno_path.")
  62. parser.add_argument("--data_dir", type=str, default="", help="Dataset directory, "
  63. "the absolute image path is joined by the data_dir "
  64. "and the relative path in anno_path")
  65. parser.add_argument("--visual_image", type=str, default="false", help="Visulize the ground truth and predicted image")
  66. parser.add_argument("--save_result_dir", type=str, default="", help="The path to save the predict results")
  67. args_opt = parser.parse_args()
  68. def _set_parallel_all_reduce_split():
  69. """set centernet all_reduce fusion split"""
  70. if net_config.last_level == 5:
  71. context.set_auto_parallel_context(all_reduce_fusion_config=[16, 56, 96, 136, 175])
  72. elif net_config.last_level == 6:
  73. context.set_auto_parallel_context(all_reduce_fusion_config=[18, 59, 100, 141, 182])
  74. else:
  75. raise ValueError("The total num of allreduced grads for last level = {} is unknown,"
  76. "please re-split after known the true value".format(net_config.last_level))
  77. def _get_params_groups(network, optimizer):
  78. """
  79. Get param groups
  80. """
  81. params = network.trainable_params()
  82. decay_params = list(filter(lambda x: not optimizer.decay_filter(x), params))
  83. other_params = list(filter(optimizer.decay_filter, params))
  84. group_params = [{'params': decay_params, 'weight_decay': optimizer.weight_decay},
  85. {'params': other_params, 'weight_decay': 0.0},
  86. {'order_params': params}]
  87. return group_params
  88. def _get_optimizer(network, dataset_size):
  89. """get optimizer, only support Adam right now."""
  90. if train_config.optimizer == 'Adam':
  91. group_params = _get_params_groups(network, train_config.Adam)
  92. if train_config.lr_schedule == "PolyDecay":
  93. lr_schedule = CenterNetPolynomialDecayLR(learning_rate=train_config.PolyDecay.learning_rate,
  94. end_learning_rate=train_config.PolyDecay.end_learning_rate,
  95. warmup_steps=train_config.PolyDecay.warmup_steps,
  96. decay_steps=args_opt.train_steps,
  97. power=train_config.PolyDecay.power)
  98. optimizer = Adam(group_params, learning_rate=lr_schedule, eps=train_config.PolyDecay.eps, loss_scale=1.0)
  99. elif train_config.lr_schedule == "MultiDecay":
  100. multi_epochs = train_config.MultiDecay.multi_epochs
  101. if not isinstance(multi_epochs, (list, tuple)):
  102. raise TypeError("multi_epochs must be list or tuple.")
  103. if not multi_epochs:
  104. multi_epochs = [args_opt.epoch_size]
  105. lr_schedule = CenterNetMultiEpochsDecayLR(learning_rate=train_config.MultiDecay.learning_rate,
  106. warmup_steps=train_config.MultiDecay.warmup_steps,
  107. multi_epochs=multi_epochs,
  108. steps_per_epoch=dataset_size,
  109. factor=train_config.MultiDecay.factor)
  110. optimizer = Adam(group_params, learning_rate=lr_schedule, eps=train_config.MultiDecay.eps, loss_scale=1.0)
  111. else:
  112. raise ValueError("Don't support lr_schedule {}, only support [PolynormialDecay, MultiEpochDecay]".
  113. format(train_config.optimizer))
  114. else:
  115. raise ValueError("Don't support optimizer {}, only support [Lamb, Momentum, Adam]".
  116. format(train_config.optimizer))
  117. return optimizer
  118. def train():
  119. """training CenterNet"""
  120. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
  121. context.set_context(enable_auto_mixed_precision=False)
  122. context.set_context(reserve_class_name_in_scope=False)
  123. context.set_context(save_graphs=False)
  124. ckpt_save_dir = args_opt.save_checkpoint_path
  125. if args_opt.distribute == "true":
  126. D.init()
  127. device_num = args_opt.device_num
  128. rank = args_opt.device_id % device_num
  129. ckpt_save_dir = args_opt.save_checkpoint_path + 'ckpt_' + str(get_rank()) + '/'
  130. context.reset_auto_parallel_context()
  131. context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, gradients_mean=True,
  132. device_num=device_num)
  133. _set_parallel_all_reduce_split()
  134. else:
  135. rank = 0
  136. device_num = 1
  137. num_workers = device_num * 8
  138. # Start create dataset!
  139. # mindrecord files will be generated at args_opt.mindrecord_dir such as centernet.mindrecord0, 1, ... file_num.
  140. logger.info("Begin creating dataset for CenterNet")
  141. prefix = "coco_hp.train.mind"
  142. coco = COCOHP(args_opt.data_dir, dataset_config, net_config, run_mode="train")
  143. coco.init(enable_visual_image=(args_opt.visual_image == "true"), save_path=args_opt.save_result_dir)
  144. dataset = coco.create_train_dataset(args_opt.mindrecord_dir, prefix, batch_size=train_config.batch_size,
  145. device_num=device_num, rank=rank, num_parallel_workers=num_workers,
  146. do_shuffle=args_opt.do_shuffle == 'true')
  147. dataset_size = dataset.get_dataset_size()
  148. logger.info("Create dataset done!")
  149. net_with_loss = CenterNetMultiPoseLossCell(net_config)
  150. new_repeat_count = args_opt.epoch_size * dataset_size // args_opt.data_sink_steps
  151. if args_opt.train_steps > 0:
  152. new_repeat_count = min(new_repeat_count, args_opt.train_steps // args_opt.data_sink_steps)
  153. else:
  154. args_opt.train_steps = args_opt.epoch_size * dataset_size
  155. logger.info("train steps: {}".format(args_opt.train_steps))
  156. optimizer = _get_optimizer(net_with_loss, dataset_size)
  157. callback = [TimeMonitor(args_opt.data_sink_steps), LossCallBack(dataset_size)]
  158. if args_opt.enable_save_ckpt == "true" and args_opt.device_id % min(8, device_num) == 0:
  159. config_ck = CheckpointConfig(save_checkpoint_steps=args_opt.save_checkpoint_steps,
  160. keep_checkpoint_max=args_opt.save_checkpoint_num)
  161. ckpoint_cb = ModelCheckpoint(prefix='checkpoint_centernet',
  162. directory=None if ckpt_save_dir == "" else ckpt_save_dir, config=config_ck)
  163. callback.append(ckpoint_cb)
  164. if args_opt.load_checkpoint_path:
  165. param_dict = load_checkpoint(args_opt.load_checkpoint_path)
  166. load_param_into_net(net_with_loss, param_dict)
  167. net_with_grads = CenterNetWithLossScaleCell(net_with_loss, optimizer=optimizer,
  168. sens=train_config.loss_scale_value)
  169. model = Model(net_with_grads)
  170. model.train(new_repeat_count, dataset, callbacks=callback, dataset_sink_mode=(args_opt.enable_data_sink == "true"),
  171. sink_size=args_opt.data_sink_steps)
  172. if __name__ == '__main__':
  173. if args_opt.need_profiler == "true":
  174. profiler = Profiler(output_path=args_opt.profiler_path)
  175. set_seed(0)
  176. train()
  177. if args_opt.need_profiler == "true":
  178. profiler.analyse()