You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_skip.py 6.3 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.dataset as ds
  18. import mindspore.dataset.vision.c_transforms as vision
  19. from mindspore import log as logger
  20. DATA_DIR_TF2 = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
  21. SCHEMA_DIR_TF2 = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
  22. def test_tf_skip():
  23. """
  24. a simple skip operation.
  25. """
  26. data1 = ds.TFRecordDataset(DATA_DIR_TF2, SCHEMA_DIR_TF2, shuffle=False)
  27. resize_height, resize_width = 32, 32
  28. decode_op = vision.Decode()
  29. resize_op = vision.Resize((resize_height, resize_width), interpolation=ds.transforms.vision.Inter.LINEAR)
  30. data1 = data1.map(operations=decode_op, input_columns=["image"])
  31. data1 = data1.map(operations=resize_op, input_columns=["image"])
  32. data1 = data1.skip(2)
  33. num_iter = 0
  34. for _ in data1.create_dict_iterator(num_epochs=1):
  35. num_iter += 1
  36. assert num_iter == 1
  37. def generator_md():
  38. """
  39. create a dataset with [0, 1, 2, 3, 4]
  40. """
  41. for i in range(5):
  42. yield (np.array([i]),)
  43. def test_generator_skip():
  44. ds1 = ds.GeneratorDataset(generator_md, ["data"], num_parallel_workers=4)
  45. # Here ds1 should be [3, 4]
  46. ds1 = ds1.skip(3)
  47. buf = []
  48. for data in ds1.create_tuple_iterator(output_numpy=True):
  49. buf.append(data[0][0])
  50. assert len(buf) == 2
  51. assert buf == [3, 4]
  52. def test_skip_1():
  53. ds1 = ds.GeneratorDataset(generator_md, ["data"])
  54. # Here ds1 should be []
  55. ds1 = ds1.skip(7)
  56. buf = []
  57. for data in ds1.create_tuple_iterator(output_numpy=True):
  58. buf.append(data[0][0])
  59. assert buf == []
  60. def test_skip_2():
  61. ds1 = ds.GeneratorDataset(generator_md, ["data"])
  62. # Here ds1 should be [0, 1, 2, 3, 4]
  63. ds1 = ds1.skip(0)
  64. buf = []
  65. for data in ds1.create_tuple_iterator(output_numpy=True):
  66. buf.append(data[0][0])
  67. assert len(buf) == 5
  68. assert buf == [0, 1, 2, 3, 4]
  69. def test_skip_repeat_1():
  70. ds1 = ds.GeneratorDataset(generator_md, ["data"])
  71. # Here ds1 should be [0, 1, 2, 3, 4, 0, 1, 2, 3, 4]
  72. ds1 = ds1.repeat(2)
  73. # Here ds1 should be [3, 4, 0, 1, 2, 3, 4]
  74. ds1 = ds1.skip(3)
  75. buf = []
  76. for data in ds1.create_tuple_iterator(output_numpy=True):
  77. buf.append(data[0][0])
  78. assert len(buf) == 7
  79. assert buf == [3, 4, 0, 1, 2, 3, 4]
  80. def test_skip_repeat_2():
  81. ds1 = ds.GeneratorDataset(generator_md, ["data"])
  82. # Here ds1 should be [3, 4]
  83. ds1 = ds1.skip(3)
  84. # Here ds1 should be [3, 4, 3, 4]
  85. ds1 = ds1.repeat(2)
  86. buf = []
  87. for data in ds1.create_tuple_iterator(output_numpy=True):
  88. buf.append(data[0][0])
  89. assert len(buf) == 4
  90. assert buf == [3, 4, 3, 4]
  91. def test_skip_repeat_3():
  92. ds1 = ds.GeneratorDataset(generator_md, ["data"])
  93. # Here ds1 should be [0, 1, 2, 3, 4, 0, 1, 2, 3, 4]
  94. ds1 = ds1.repeat(2)
  95. # Here ds1 should be [3, 4]
  96. ds1 = ds1.skip(8)
  97. # Here ds1 should be [3, 4, 3, 4, 3, 4]
  98. ds1 = ds1.repeat(3)
  99. buf = []
  100. for data in ds1.create_tuple_iterator(output_numpy=True):
  101. buf.append(data[0][0])
  102. assert len(buf) == 6
  103. assert buf == [3, 4, 3, 4, 3, 4]
  104. def test_skip_take_1():
  105. ds1 = ds.GeneratorDataset(generator_md, ["data"])
  106. # Here ds1 should be [0, 1, 2, 3]
  107. ds1 = ds1.take(4)
  108. # Here ds1 should be [2, 3]
  109. ds1 = ds1.skip(2)
  110. buf = []
  111. for data in ds1.create_tuple_iterator(output_numpy=True):
  112. buf.append(data[0][0])
  113. assert len(buf) == 2
  114. assert buf == [2, 3]
  115. def test_skip_take_2():
  116. ds1 = ds.GeneratorDataset(generator_md, ["data"])
  117. # Here ds1 should be [2, 3, 4]
  118. ds1 = ds1.skip(2)
  119. # Here ds1 should be [2, 3]
  120. ds1 = ds1.take(2)
  121. buf = []
  122. for data in ds1.create_tuple_iterator(output_numpy=True):
  123. buf.append(data[0][0])
  124. assert len(buf) == 2
  125. assert buf == [2, 3]
  126. def generator_1d():
  127. for i in range(64):
  128. yield (np.array([i]),)
  129. def test_skip_filter_1():
  130. dataset = ds.GeneratorDataset(generator_1d, ['data'])
  131. dataset = dataset.skip(5)
  132. dataset = dataset.filter(predicate=lambda data: data < 11, num_parallel_workers=4)
  133. buf = []
  134. for item in dataset.create_tuple_iterator(output_numpy=True):
  135. buf.append(item[0][0])
  136. assert buf == [5, 6, 7, 8, 9, 10]
  137. def test_skip_filter_2():
  138. dataset = ds.GeneratorDataset(generator_1d, ['data'])
  139. dataset = dataset.filter(predicate=lambda data: data < 11, num_parallel_workers=4)
  140. dataset = dataset.skip(5)
  141. buf = []
  142. for item in dataset.create_tuple_iterator(output_numpy=True):
  143. buf.append(item[0][0])
  144. assert buf == [5, 6, 7, 8, 9, 10]
  145. def test_skip_exception_1():
  146. data1 = ds.GeneratorDataset(generator_md, ["data"])
  147. try:
  148. data1 = data1.skip(count=-1)
  149. num_iter = 0
  150. for _ in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
  151. num_iter += 1
  152. except RuntimeError as e:
  153. logger.info("Got an exception in DE: {}".format(str(e)))
  154. assert "skip count should be greater than or equal to 0." in str(e)
  155. def test_skip_exception_2():
  156. ds1 = ds.GeneratorDataset(generator_md, ["data"])
  157. with pytest.raises(ValueError) as e:
  158. ds1 = ds1.skip(-2)
  159. assert "Input count is not within the required interval" in str(e.value)
  160. if __name__ == "__main__":
  161. test_tf_skip()
  162. test_generator_skip()
  163. test_skip_1()
  164. test_skip_2()
  165. test_skip_repeat_1()
  166. test_skip_repeat_2()
  167. test_skip_repeat_3()
  168. test_skip_take_1()
  169. test_skip_take_2()
  170. test_skip_filter_1()
  171. test_skip_filter_2()
  172. test_skip_exception_1()
  173. test_skip_exception_2()