You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_sentencepiece_tokenizer.py 8.1 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. import copy
  16. import mindspore.dataset.text as text
  17. import mindspore.dataset as ds
  18. from mindspore.dataset.text import SentencePieceModel, to_str, SPieceTokenizerOutType
  19. VOCAB_FILE = "../data/dataset/test_sentencepiece/botchan.txt"
  20. DATA_FILE = "../data/dataset/testTokenizerData/sentencepiece_tokenizer.txt"
  21. def test_from_vocab_to_str_UNIGRAM():
  22. vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
  23. tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
  24. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  25. dataset = dataset.map(operations=tokenizer)
  26. expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
  27. for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
  28. ret = to_str(i["text"])
  29. for key, value in enumerate(ret):
  30. assert value == expect[key]
  31. def test_from_vocab_to_str_BPE():
  32. vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.BPE, {})
  33. tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
  34. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  35. dataset = dataset.map(operations=tokenizer)
  36. expect = ['▁I', '▁saw', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'c', 'ope', '.']
  37. for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
  38. ret = to_str(i["text"])
  39. for key, value in enumerate(ret):
  40. assert value == expect[key]
  41. def test_from_vocab_to_str_CHAR():
  42. vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.CHAR, {})
  43. tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
  44. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  45. dataset = dataset.map(operations=tokenizer)
  46. expect = ['▁', 'I', '▁', 's', 'a', 'w', '▁', 'a', '▁', 'g', 'i', 'r', 'l', '▁', 'w', 'i', 't', 'h',\
  47. '▁', 'a', '▁', 't', 'e', 'l', 'e', 's', 'c', 'o', 'p', 'e', '.']
  48. for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
  49. ret = to_str(i["text"])
  50. for key, value in enumerate(ret):
  51. assert value == expect[key]
  52. def test_from_vocab_to_str_WORD():
  53. vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.WORD, {})
  54. tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
  55. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  56. dataset = dataset.map(operations=tokenizer)
  57. expect = ['▁I', '▁saw', '▁a', '▁girl', '▁with', '▁a', '▁telescope.']
  58. for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
  59. ret = to_str(i["text"])
  60. for key, value in enumerate(ret):
  61. assert value == expect[key]
  62. def test_from_vocab_to_int():
  63. vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
  64. tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.INT)
  65. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  66. dataset = dataset.map(operations=tokenizer)
  67. expect = [6, 329, 183, 8, 945, 23, 8, 3783, 4382, 4641, 1405, 4]
  68. for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
  69. ret = i["text"]
  70. for key, value in enumerate(ret):
  71. assert value == expect[key]
  72. def test_from_file_to_str():
  73. vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
  74. text.SentencePieceVocab.save_model(vocab, "./", "m.model")
  75. tokenizer = text.SentencePieceTokenizer("./m.model", out_type=SPieceTokenizerOutType.STRING)
  76. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  77. dataset = dataset.map(operations=tokenizer)
  78. expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
  79. for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
  80. ret = to_str(i["text"])
  81. for key, value in enumerate(ret):
  82. assert value == expect[key]
  83. def test_from_file_to_int():
  84. vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
  85. text.SentencePieceVocab.save_model(vocab, "./", "m.model")
  86. tokenizer = text.SentencePieceTokenizer("./m.model", out_type=SPieceTokenizerOutType.INT)
  87. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  88. dataset = dataset.map(operations=tokenizer)
  89. expect = [6, 329, 183, 8, 945, 23, 8, 3783, 4382, 4641, 1405, 4]
  90. for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
  91. ret = i["text"]
  92. for key, value in enumerate(ret):
  93. assert value == expect[key]
  94. def test_build_from_dataset():
  95. data = ds.TextFileDataset(VOCAB_FILE, shuffle=False)
  96. vocab = text.SentencePieceVocab.from_dataset(data, [""], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
  97. tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
  98. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  99. dataset = dataset.map(operations=tokenizer)
  100. expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
  101. for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
  102. ret = to_str(i["text"])
  103. for key, value in enumerate(ret):
  104. assert value == expect[key]
  105. def apply_func(dataset):
  106. input_columns = ['text']
  107. output_columns = ['text2']
  108. dataset = dataset.rename(input_columns, output_columns)
  109. return dataset
  110. def zip_test(dataset):
  111. dataset_1 = copy.deepcopy(dataset)
  112. dataset_2 = copy.deepcopy(dataset)
  113. dataset_1 = dataset_1.apply(apply_func)
  114. dataset_zip = ds.zip((dataset_1, dataset_2))
  115. expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
  116. for i in dataset_zip.create_dict_iterator(num_epochs=1, output_numpy=True):
  117. ret = to_str(i["text"])
  118. for key, value in enumerate(ret):
  119. assert value == expect[key]
  120. def concat_test(dataset):
  121. dataset_1 = copy.deepcopy(dataset)
  122. dataset = dataset.concat(dataset_1)
  123. expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
  124. for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
  125. ret = to_str(i["text"])
  126. for key, value in enumerate(ret):
  127. assert value == expect[key]
  128. def test_with_zip_concat():
  129. data = ds.TextFileDataset(VOCAB_FILE, shuffle=False)
  130. vocab = text.SentencePieceVocab.from_dataset(data, [""], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
  131. tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
  132. dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
  133. dataset = dataset.map(operations=tokenizer, num_parallel_workers=2)
  134. zip_test(dataset)
  135. concat_test(dataset)
  136. if __name__ == "__main__":
  137. test_from_vocab_to_str_UNIGRAM()
  138. test_from_vocab_to_str_BPE()
  139. test_from_vocab_to_str_CHAR()
  140. test_from_vocab_to_str_WORD()
  141. test_from_vocab_to_int()
  142. test_from_file_to_str()
  143. test_from_file_to_int()
  144. test_build_from_dataset()
  145. test_with_zip_concat()