You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_random_sharpness.py 13 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing RandomSharpness op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset as ds
  20. import mindspore.dataset.engine as de
  21. import mindspore.dataset.transforms.py_transforms
  22. import mindspore.dataset.vision.py_transforms as F
  23. import mindspore.dataset.vision.c_transforms as C
  24. from mindspore import log as logger
  25. from util import visualize_list, visualize_one_channel_dataset, diff_mse, save_and_check_md5, \
  26. config_get_set_seed, config_get_set_num_parallel_workers
  27. DATA_DIR = "../data/dataset/testImageNetData/train/"
  28. MNIST_DATA_DIR = "../data/dataset/testMnistData"
  29. GENERATE_GOLDEN = False
  30. def test_random_sharpness_py(degrees=(0.7, 0.7), plot=False):
  31. """
  32. Test RandomSharpness python op
  33. """
  34. logger.info("Test RandomSharpness python op")
  35. # Original Images
  36. data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  37. transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  38. F.Resize((224, 224)),
  39. F.ToTensor()])
  40. ds_original = data.map(operations=transforms_original, input_columns="image")
  41. ds_original = ds_original.batch(512)
  42. for idx, (image, _) in enumerate(ds_original.create_tuple_iterator(output_numpy=True)):
  43. if idx == 0:
  44. images_original = np.transpose(image, (0, 2, 3, 1))
  45. else:
  46. images_original = np.append(images_original,
  47. np.transpose(image, (0, 2, 3, 1)),
  48. axis=0)
  49. # Random Sharpness Adjusted Images
  50. data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  51. py_op = F.RandomSharpness()
  52. if degrees is not None:
  53. py_op = F.RandomSharpness(degrees)
  54. transforms_random_sharpness = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  55. F.Resize((224, 224)),
  56. py_op,
  57. F.ToTensor()])
  58. ds_random_sharpness = data.map(operations=transforms_random_sharpness, input_columns="image")
  59. ds_random_sharpness = ds_random_sharpness.batch(512)
  60. for idx, (image, _) in enumerate(ds_random_sharpness.create_tuple_iterator(output_numpy=True)):
  61. if idx == 0:
  62. images_random_sharpness = np.transpose(image, (0, 2, 3, 1))
  63. else:
  64. images_random_sharpness = np.append(images_random_sharpness,
  65. np.transpose(image, (0, 2, 3, 1)),
  66. axis=0)
  67. num_samples = images_original.shape[0]
  68. mse = np.zeros(num_samples)
  69. for i in range(num_samples):
  70. mse[i] = diff_mse(images_random_sharpness[i], images_original[i])
  71. logger.info("MSE= {}".format(str(np.mean(mse))))
  72. if plot:
  73. visualize_list(images_original, images_random_sharpness)
  74. def test_random_sharpness_py_md5():
  75. """
  76. Test RandomSharpness python op with md5 comparison
  77. """
  78. logger.info("Test RandomSharpness python op with md5 comparison")
  79. original_seed = config_get_set_seed(5)
  80. original_num_parallel_workers = config_get_set_num_parallel_workers(1)
  81. # define map operations
  82. transforms = [
  83. F.Decode(),
  84. F.RandomSharpness((20.0, 25.0)),
  85. F.ToTensor()
  86. ]
  87. transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)
  88. # Generate dataset
  89. data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  90. data = data.map(operations=transform, input_columns=["image"])
  91. # check results with md5 comparison
  92. filename = "random_sharpness_py_01_result.npz"
  93. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  94. # Restore configuration
  95. ds.config.set_seed(original_seed)
  96. ds.config.set_num_parallel_workers(original_num_parallel_workers)
  97. def test_random_sharpness_c(degrees=(1.6, 1.6), plot=False):
  98. """
  99. Test RandomSharpness cpp op
  100. """
  101. print(degrees)
  102. logger.info("Test RandomSharpness cpp op")
  103. # Original Images
  104. data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  105. transforms_original = [C.Decode(),
  106. C.Resize((224, 224))]
  107. ds_original = data.map(operations=transforms_original, input_columns="image")
  108. ds_original = ds_original.batch(512)
  109. for idx, (image, _) in enumerate(ds_original.create_tuple_iterator(output_numpy=True)):
  110. if idx == 0:
  111. images_original = image
  112. else:
  113. images_original = np.append(images_original,
  114. image,
  115. axis=0)
  116. # Random Sharpness Adjusted Images
  117. data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  118. c_op = C.RandomSharpness()
  119. if degrees is not None:
  120. c_op = C.RandomSharpness(degrees)
  121. transforms_random_sharpness = [C.Decode(),
  122. C.Resize((224, 224)),
  123. c_op]
  124. ds_random_sharpness = data.map(operations=transforms_random_sharpness, input_columns="image")
  125. ds_random_sharpness = ds_random_sharpness.batch(512)
  126. for idx, (image, _) in enumerate(ds_random_sharpness.create_tuple_iterator(output_numpy=True)):
  127. if idx == 0:
  128. images_random_sharpness = image
  129. else:
  130. images_random_sharpness = np.append(images_random_sharpness,
  131. image,
  132. axis=0)
  133. num_samples = images_original.shape[0]
  134. mse = np.zeros(num_samples)
  135. for i in range(num_samples):
  136. mse[i] = diff_mse(images_random_sharpness[i], images_original[i])
  137. logger.info("MSE= {}".format(str(np.mean(mse))))
  138. if plot:
  139. visualize_list(images_original, images_random_sharpness)
  140. def test_random_sharpness_c_md5():
  141. """
  142. Test RandomSharpness cpp op with md5 comparison
  143. """
  144. logger.info("Test RandomSharpness cpp op with md5 comparison")
  145. original_seed = config_get_set_seed(200)
  146. original_num_parallel_workers = config_get_set_num_parallel_workers(1)
  147. # define map operations
  148. transforms = [
  149. C.Decode(),
  150. C.RandomSharpness((10.0, 15.0))
  151. ]
  152. # Generate dataset
  153. data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  154. data = data.map(operations=transforms, input_columns=["image"])
  155. # check results with md5 comparison
  156. filename = "random_sharpness_cpp_01_result.npz"
  157. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  158. # Restore configuration
  159. ds.config.set_seed(original_seed)
  160. ds.config.set_num_parallel_workers(original_num_parallel_workers)
  161. def test_random_sharpness_c_py(degrees=(1.0, 1.0), plot=False):
  162. """
  163. Test Random Sharpness C and python Op
  164. """
  165. logger.info("Test RandomSharpness C and python Op")
  166. # RandomSharpness Images
  167. data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  168. data = data.map(operations=[C.Decode(), C.Resize((200, 300))], input_columns=["image"])
  169. python_op = F.RandomSharpness(degrees)
  170. c_op = C.RandomSharpness(degrees)
  171. transforms_op = mindspore.dataset.transforms.py_transforms.Compose([lambda img: F.ToPIL()(img.astype(np.uint8)),
  172. python_op,
  173. np.array])
  174. ds_random_sharpness_py = data.map(operations=transforms_op, input_columns="image")
  175. ds_random_sharpness_py = ds_random_sharpness_py.batch(512)
  176. for idx, (image, _) in enumerate(ds_random_sharpness_py.create_tuple_iterator(output_numpy=True)):
  177. if idx == 0:
  178. images_random_sharpness_py = image
  179. else:
  180. images_random_sharpness_py = np.append(images_random_sharpness_py,
  181. image,
  182. axis=0)
  183. data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  184. data = data.map(operations=[C.Decode(), C.Resize((200, 300))], input_columns=["image"])
  185. ds_images_random_sharpness_c = data.map(operations=c_op, input_columns="image")
  186. ds_images_random_sharpness_c = ds_images_random_sharpness_c.batch(512)
  187. for idx, (image, _) in enumerate(ds_images_random_sharpness_c.create_tuple_iterator(output_numpy=True)):
  188. if idx == 0:
  189. images_random_sharpness_c = image
  190. else:
  191. images_random_sharpness_c = np.append(images_random_sharpness_c,
  192. image,
  193. axis=0)
  194. num_samples = images_random_sharpness_c.shape[0]
  195. mse = np.zeros(num_samples)
  196. for i in range(num_samples):
  197. mse[i] = diff_mse(images_random_sharpness_c[i], images_random_sharpness_py[i])
  198. logger.info("MSE= {}".format(str(np.mean(mse))))
  199. if plot:
  200. visualize_list(images_random_sharpness_c, images_random_sharpness_py, visualize_mode=2)
  201. def test_random_sharpness_one_channel_c(degrees=(1.4, 1.4), plot=False):
  202. """
  203. Test Random Sharpness cpp op with one channel
  204. """
  205. logger.info("Test RandomSharpness C Op With MNIST Dataset (Grayscale images)")
  206. c_op = C.RandomSharpness()
  207. if degrees is not None:
  208. c_op = C.RandomSharpness(degrees)
  209. # RandomSharpness Images
  210. data = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  211. ds_random_sharpness_c = data.map(operations=c_op, input_columns="image")
  212. # Original images
  213. data = de.MnistDataset(dataset_dir=MNIST_DATA_DIR, num_samples=2, shuffle=False)
  214. images = []
  215. images_trans = []
  216. labels = []
  217. for _, (data_orig, data_trans) in enumerate(zip(data, ds_random_sharpness_c)):
  218. image_orig, label_orig = data_orig
  219. image_trans, _ = data_trans
  220. images.append(image_orig.asnumpy())
  221. labels.append(label_orig.asnumpy())
  222. images_trans.append(image_trans.asnumpy())
  223. if plot:
  224. visualize_one_channel_dataset(images, images_trans, labels)
  225. def test_random_sharpness_invalid_params():
  226. """
  227. Test RandomSharpness with invalid input parameters.
  228. """
  229. logger.info("Test RandomSharpness with invalid input parameters.")
  230. try:
  231. data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  232. data = data.map(operations=[C.Decode(), C.Resize((224, 224)),
  233. C.RandomSharpness(10)], input_columns=["image"])
  234. except TypeError as error:
  235. logger.info("Got an exception in DE: {}".format(str(error)))
  236. assert "tuple" in str(error)
  237. try:
  238. data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  239. data = data.map(operations=[C.Decode(), C.Resize((224, 224)),
  240. C.RandomSharpness((-10, 10))], input_columns=["image"])
  241. except ValueError as error:
  242. logger.info("Got an exception in DE: {}".format(str(error)))
  243. assert "interval" in str(error)
  244. try:
  245. data = de.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  246. data = data.map(operations=[C.Decode(), C.Resize((224, 224)),
  247. C.RandomSharpness((10, 5))], input_columns=["image"])
  248. except ValueError as error:
  249. logger.info("Got an exception in DE: {}".format(str(error)))
  250. assert "(min,max)" in str(error)
  251. if __name__ == "__main__":
  252. test_random_sharpness_py(plot=True)
  253. test_random_sharpness_py(None, plot=True) # Test with default values
  254. test_random_sharpness_py(degrees=(20.0, 25.0),
  255. plot=True) # Test with degree values that show more obvious transformation
  256. test_random_sharpness_py_md5()
  257. test_random_sharpness_c(plot=True)
  258. test_random_sharpness_c(None, plot=True) # test with default values
  259. test_random_sharpness_c(degrees=[10, 15],
  260. plot=True) # Test with degrees values that show more obvious transformation
  261. test_random_sharpness_c_md5()
  262. test_random_sharpness_c_py(degrees=[1.5, 1.5], plot=True)
  263. test_random_sharpness_c_py(degrees=[1, 1], plot=True)
  264. test_random_sharpness_c_py(degrees=[10, 10], plot=True)
  265. test_random_sharpness_one_channel_c(degrees=[1.7, 1.7], plot=True)
  266. test_random_sharpness_one_channel_c(degrees=None, plot=True) # Test with default values
  267. test_random_sharpness_invalid_params()