|
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """
- create train or eval dataset.
- """
- import os
- import mindspore.common.dtype as mstype
- import mindspore.dataset.engine as de
- import mindspore.dataset.transforms.vision.c_transforms as C
- import mindspore.dataset.transforms.c_transforms as C2
- from mindspore.communication.management import init, get_rank, get_group_size
-
- def create_dataset(dataset_path, do_train, repeat_num=1, batch_size=32, target="Ascend"):
- """
- create a train or eval dataset
-
- Args:
- dataset_path(string): the path of dataset.
- do_train(bool): whether dataset is used for train or eval.
- repeat_num(int): the repeat times of dataset. Default: 1
- batch_size(int): the batch size of dataset. Default: 32
- target(str): the device target. Default: Ascend
-
- Returns:
- dataset
- """
- if target == "Ascend":
- device_num = int(os.getenv("DEVICE_NUM"))
- rank_id = int(os.getenv("RANK_ID"))
- else:
- init("nccl")
- rank_id = get_rank()
- device_num = get_group_size()
-
- if device_num == 1:
- ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True)
- else:
- ds = de.ImageFolderDatasetV2(dataset_path, num_parallel_workers=8, shuffle=True,
- num_shards=device_num, shard_id=rank_id)
-
- image_size = 224
- mean = [0.485 * 255, 0.456 * 255, 0.406 * 255]
- std = [0.229 * 255, 0.224 * 255, 0.225 * 255]
-
- # define map operations
- if do_train:
- trans = [
- C.RandomCropDecodeResize(image_size, scale=(0.08, 1.0), ratio=(0.75, 1.333)),
- C.RandomHorizontalFlip(prob=0.5),
- C.Normalize(mean=mean, std=std),
- C.HWC2CHW()
- ]
- else:
- trans = [
- C.Decode(),
- C.Resize((256, 256)),
- C.CenterCrop(image_size),
- C.Normalize(mean=mean, std=std),
- C.HWC2CHW()
- ]
-
- type_cast_op = C2.TypeCast(mstype.int32)
-
- ds = ds.map(input_columns="image", num_parallel_workers=8, operations=trans)
- ds = ds.map(input_columns="label", num_parallel_workers=8, operations=type_cast_op)
-
- # apply batch operations
- ds = ds.batch(batch_size, drop_remainder=True)
-
- # apply dataset repeat operation
- ds = ds.repeat(repeat_num)
-
- return ds
|