You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

eval.py 4.2 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Inference Interface"""
  16. import sys
  17. import argparse
  18. import logging
  19. from mindspore.train.model import Model
  20. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  21. from mindspore.nn import Loss, Top1CategoricalAccuracy, Top5CategoricalAccuracy
  22. from mindspore import context
  23. from src.dataset import create_dataset_cifar10
  24. from src.loss import LabelSmoothingCrossEntropy
  25. from src.nasnet import nasbenchnet
  26. from easydict import EasyDict as edict
  27. root = logging.getLogger()
  28. root.setLevel(logging.DEBUG)
  29. parser = argparse.ArgumentParser(description='Evaluation')
  30. parser.add_argument('--data_path', type=str, default='/home/workspace/mindspore_dataset/',
  31. metavar='DIR', help='path to dataset')
  32. parser.add_argument('--model', default='hournas_f_c10', type=str, metavar='MODEL',
  33. help='Name of model to train (default: "hournas_f_c10")')
  34. parser.add_argument('--num-classes', type=int, default=10, metavar='N',
  35. help='number of label classes (default: 10)')
  36. parser.add_argument('--smoothing', type=float, default=0.1,
  37. help='label smoothing (default: 0.1)')
  38. parser.add_argument('-b', '--batch-size', type=int, default=32, metavar='N',
  39. help='input batch size for training (default: 32)')
  40. parser.add_argument('-j', '--workers', type=int, default=4, metavar='N',
  41. help='how many training processes to use (default: 4)')
  42. parser.add_argument('--ckpt', type=str, default='./nasmodel.ckpt',
  43. help='model checkpoint to load')
  44. parser.add_argument('--GPU', action='store_true', default=False,
  45. help='Use GPU for training (default: False)')
  46. parser.add_argument('--dataset_sink', action='store_true', default=False,
  47. help='Data sink (default: False)')
  48. parser.add_argument('--device_id', type=int, default=0,
  49. help='Device ID (default: 0)')
  50. parser.add_argument('--image-size', type=int, default=32, metavar='N',
  51. help='input image size (default: 32)')
  52. def main():
  53. """Main entrance for training"""
  54. args = parser.parse_args()
  55. print(sys.argv)
  56. #context.set_context(mode=context.GRAPH_MODE)
  57. context.set_context(mode=context.PYNATIVE_MODE)
  58. if args.GPU:
  59. context.set_context(device_target='GPU', device_id=args.device_id)
  60. # parse model argument
  61. assert args.model.startswith(
  62. "hournas"), "Only Tinynet models are supported."
  63. net = nasbenchnet()
  64. cfg = edict({
  65. 'image_height': args.image_size,
  66. 'image_width': args.image_size,
  67. })
  68. cfg.batch_size = args.batch_size
  69. val_data_url = args.data_path
  70. val_dataset = create_dataset_cifar10(val_data_url, repeat_num=1, training=False, cifar_cfg=cfg)
  71. loss = LabelSmoothingCrossEntropy(smooth_factor=args.smoothing,
  72. num_classes=args.num_classes)
  73. loss.add_flags_recursive(fp32=True, fp16=False)
  74. eval_metrics = {'Validation-Loss': Loss(),
  75. 'Top1-Acc': Top1CategoricalAccuracy(),
  76. 'Top5-Acc': Top5CategoricalAccuracy()}
  77. ckpt = load_checkpoint(args.ckpt)
  78. load_param_into_net(net, ckpt)
  79. net.set_train(False)
  80. model = Model(net, loss, metrics=eval_metrics)
  81. metrics = model.eval(val_dataset, dataset_sink_mode=False)
  82. print(metrics)
  83. if __name__ == '__main__':
  84. main()