You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

image_process_test.cc 45 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "common/common.h"
  17. #include "lite_cv/lite_mat.h"
  18. #include "lite_cv/image_process.h"
  19. #include <opencv2/opencv.hpp>
  20. #include <opencv2/imgproc/types_c.h>
  21. #include <fstream>
  22. using namespace mindspore::dataset;
  23. class MindDataImageProcess : public UT::Common {
  24. public:
  25. MindDataImageProcess() {}
  26. void SetUp() {}
  27. };
  28. void CompareMat(cv::Mat cv_mat, LiteMat lite_mat) {
  29. int cv_h = cv_mat.rows;
  30. int cv_w = cv_mat.cols;
  31. int cv_c = cv_mat.channels();
  32. int lite_h = lite_mat.height_;
  33. int lite_w = lite_mat.width_;
  34. int lite_c = lite_mat.channel_;
  35. ASSERT_TRUE(cv_h == lite_h);
  36. ASSERT_TRUE(cv_w == lite_w);
  37. ASSERT_TRUE(cv_c == lite_c);
  38. }
  39. void Lite3CImageProcess(LiteMat &lite_mat_bgr, LiteMat &lite_norm_mat_cut) {
  40. bool ret;
  41. LiteMat lite_mat_resize;
  42. ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
  43. ASSERT_TRUE(ret == true);
  44. LiteMat lite_mat_convert_float;
  45. ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0);
  46. ASSERT_TRUE(ret == true);
  47. LiteMat lite_mat_crop;
  48. ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224);
  49. ASSERT_TRUE(ret == true);
  50. std::vector<float> means = {0.485, 0.456, 0.406};
  51. std::vector<float> stds = {0.229, 0.224, 0.225};
  52. SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, stds);
  53. return;
  54. }
  55. cv::Mat cv3CImageProcess(cv::Mat &image) {
  56. cv::Mat resize_256_image;
  57. cv::resize(image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
  58. cv::Mat float_256_image;
  59. resize_256_image.convertTo(float_256_image, CV_32FC3);
  60. cv::Mat roi_224_image;
  61. cv::Rect roi;
  62. roi.x = 16;
  63. roi.y = 16;
  64. roi.width = 224;
  65. roi.height = 224;
  66. float_256_image(roi).copyTo(roi_224_image);
  67. float meanR = 0.485;
  68. float meanG = 0.456;
  69. float meanB = 0.406;
  70. float varR = 0.229;
  71. float varG = 0.224;
  72. float varB = 0.225;
  73. cv::Scalar mean = cv::Scalar(meanR, meanG, meanB);
  74. cv::Scalar var = cv::Scalar(varR, varG, varB);
  75. cv::Mat imgMean(roi_224_image.size(), CV_32FC3, mean);
  76. cv::Mat imgVar(roi_224_image.size(), CV_32FC3, var);
  77. cv::Mat imgR1 = roi_224_image - imgMean;
  78. cv::Mat imgR2 = imgR1 / imgVar;
  79. return imgR2;
  80. }
  81. TEST_F(MindDataImageProcess, testRGB) {
  82. std::string filename = "data/dataset/apple.jpg";
  83. cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  84. cv::Mat rgba_mat;
  85. cv::cvtColor(image, rgba_mat, CV_BGR2RGB);
  86. bool ret = false;
  87. LiteMat lite_mat_rgb;
  88. ret = InitFromPixel(rgba_mat.data, LPixelType::RGB, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_rgb);
  89. ASSERT_TRUE(ret == true);
  90. cv::Mat dst_image(lite_mat_rgb.height_, lite_mat_rgb.width_, CV_8UC3, lite_mat_rgb.data_ptr_);
  91. }
  92. TEST_F(MindDataImageProcess, testLoadByMemPtr) {
  93. std::string filename = "data/dataset/apple.jpg";
  94. cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  95. cv::Mat rgba_mat;
  96. cv::cvtColor(image, rgba_mat, CV_BGR2RGB);
  97. bool ret = false;
  98. int width = rgba_mat.cols;
  99. int height = rgba_mat.rows;
  100. uchar *p_rgb = (uchar *)malloc(width * height * 3 * sizeof(uchar));
  101. for (int i = 0; i < height; i++) {
  102. const uchar *current = rgba_mat.ptr<uchar>(i);
  103. for (int j = 0; j < width; j++) {
  104. p_rgb[i * width * 3 + 3 * j + 0] = current[3 * j + 0];
  105. p_rgb[i * width * 3 + 3 * j + 1] = current[3 * j + 1];
  106. p_rgb[i * width * 3 + 3 * j + 2] = current[3 * j + 2];
  107. }
  108. }
  109. LiteMat lite_mat_rgb(width, height, 3, (void *)p_rgb, LDataType::UINT8);
  110. LiteMat lite_mat_resize;
  111. ret = ResizeBilinear(lite_mat_rgb, lite_mat_resize, 256, 256);
  112. ASSERT_TRUE(ret == true);
  113. LiteMat lite_mat_convert_float;
  114. ret = ConvertTo(lite_mat_resize, lite_mat_convert_float, 1.0);
  115. ASSERT_TRUE(ret == true);
  116. LiteMat lite_mat_crop;
  117. ret = Crop(lite_mat_convert_float, lite_mat_crop, 16, 16, 224, 224);
  118. ASSERT_TRUE(ret == true);
  119. std::vector<float> means = {0.485, 0.456, 0.406};
  120. std::vector<float> stds = {0.229, 0.224, 0.225};
  121. LiteMat lite_norm_mat_cut;
  122. ret = SubStractMeanNormalize(lite_mat_crop, lite_norm_mat_cut, means, stds);
  123. int pad_width = lite_norm_mat_cut.width_ + 20;
  124. int pad_height = lite_norm_mat_cut.height_ + 20;
  125. float *p_rgb_pad = (float *)malloc(pad_width * pad_height * 3 * sizeof(float));
  126. LiteMat makeborder(pad_width, pad_height, 3, (void *)p_rgb_pad, LDataType::FLOAT32);
  127. ret = Pad(lite_norm_mat_cut, makeborder, 10, 30, 40, 10, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
  128. cv::Mat dst_image(pad_height, pad_width, CV_8UC3, p_rgb_pad);
  129. free(p_rgb);
  130. free(p_rgb_pad);
  131. }
  132. TEST_F(MindDataImageProcess, test3C) {
  133. std::string filename = "data/dataset/apple.jpg";
  134. cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  135. cv::Mat cv_image = cv3CImageProcess(image);
  136. // convert to RGBA for Android bitmap(rgba)
  137. cv::Mat rgba_mat;
  138. cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
  139. bool ret = false;
  140. LiteMat lite_mat_bgr;
  141. ret =
  142. InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
  143. ASSERT_TRUE(ret == true);
  144. LiteMat lite_norm_mat_cut;
  145. Lite3CImageProcess(lite_mat_bgr, lite_norm_mat_cut);
  146. cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC3, lite_norm_mat_cut.data_ptr_);
  147. CompareMat(cv_image, lite_norm_mat_cut);
  148. }
  149. bool ReadYUV(const char *filename, int w, int h, uint8_t **data) {
  150. FILE *f = fopen(filename, "rb");
  151. if (f == nullptr) {
  152. return false;
  153. }
  154. fseek(f, 0, SEEK_END);
  155. int size = ftell(f);
  156. int expect_size = w * h + 2 * ((w + 1) / 2) * ((h + 1) / 2);
  157. if (size != expect_size) {
  158. fclose(f);
  159. return false;
  160. }
  161. fseek(f, 0, SEEK_SET);
  162. *data = (uint8_t *)malloc(size);
  163. size_t re = fread(*data, 1, size, f);
  164. if (re != size) {
  165. fclose(f);
  166. return false;
  167. }
  168. fclose(f);
  169. return true;
  170. }
  171. TEST_F(MindDataImageProcess, testNV21ToBGR) {
  172. // ffmpeg -i ./data/dataset/apple.jpg -s 1024*800 -pix_fmt nv21 ./data/dataset/yuv/test_nv21.yuv
  173. const char *filename = "data/dataset/yuv/test_nv21.yuv";
  174. int w = 1024;
  175. int h = 800;
  176. uint8_t *yuv_data = nullptr;
  177. bool ret = ReadYUV(filename, w, h, &yuv_data);
  178. ASSERT_TRUE(ret == true);
  179. cv::Mat yuvimg(h * 3 / 2, w, CV_8UC1);
  180. memcpy(yuvimg.data, yuv_data, w * h * 3 / 2);
  181. cv::Mat rgbimage;
  182. cv::cvtColor(yuvimg, rgbimage, cv::COLOR_YUV2BGR_NV21);
  183. LiteMat lite_mat_bgr;
  184. ret = InitFromPixel(yuv_data, LPixelType::NV212BGR, LDataType::UINT8, w, h, lite_mat_bgr);
  185. ASSERT_TRUE(ret == true);
  186. cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC3, lite_mat_bgr.data_ptr_);
  187. }
  188. TEST_F(MindDataImageProcess, testNV12ToBGR) {
  189. // ffmpeg -i ./data/dataset/apple.jpg -s 1024*800 -pix_fmt nv12 ./data/dataset/yuv/test_nv12.yuv
  190. const char *filename = "data/dataset/yuv/test_nv12.yuv";
  191. int w = 1024;
  192. int h = 800;
  193. uint8_t *yuv_data = nullptr;
  194. bool ret = ReadYUV(filename, w, h, &yuv_data);
  195. ASSERT_TRUE(ret == true);
  196. cv::Mat yuvimg(h * 3 / 2, w, CV_8UC1);
  197. memcpy(yuvimg.data, yuv_data, w * h * 3 / 2);
  198. cv::Mat rgbimage;
  199. cv::cvtColor(yuvimg, rgbimage, cv::COLOR_YUV2BGR_NV12);
  200. LiteMat lite_mat_bgr;
  201. ret = InitFromPixel(yuv_data, LPixelType::NV122BGR, LDataType::UINT8, w, h, lite_mat_bgr);
  202. ASSERT_TRUE(ret == true);
  203. cv::Mat dst_image(lite_mat_bgr.height_, lite_mat_bgr.width_, CV_8UC3, lite_mat_bgr.data_ptr_);
  204. }
  205. TEST_F(MindDataImageProcess, testExtractChannel) {
  206. std::string filename = "data/dataset/apple.jpg";
  207. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  208. cv::Mat dst_image;
  209. cv::extractChannel(src_image, dst_image, 2);
  210. // convert to RGBA for Android bitmap(rgba)
  211. cv::Mat rgba_mat;
  212. cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
  213. bool ret = false;
  214. LiteMat lite_mat_bgr;
  215. ret =
  216. InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
  217. ASSERT_TRUE(ret == true);
  218. LiteMat lite_B;
  219. ret = ExtractChannel(lite_mat_bgr, lite_B, 0);
  220. ASSERT_TRUE(ret == true);
  221. LiteMat lite_R;
  222. ret = ExtractChannel(lite_mat_bgr, lite_R, 2);
  223. ASSERT_TRUE(ret == true);
  224. cv::Mat dst_imageR(lite_R.height_, lite_R.width_, CV_8UC1, lite_R.data_ptr_);
  225. // cv::imwrite("./test_lite_r.jpg", dst_imageR);
  226. }
  227. TEST_F(MindDataImageProcess, testSplit) {
  228. std::string filename = "data/dataset/apple.jpg";
  229. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  230. std::vector<cv::Mat> dst_images;
  231. cv::split(src_image, dst_images);
  232. // convert to RGBA for Android bitmap(rgba)
  233. cv::Mat rgba_mat;
  234. cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
  235. bool ret = false;
  236. LiteMat lite_mat_bgr;
  237. ret =
  238. InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
  239. ASSERT_TRUE(ret == true);
  240. std::vector<LiteMat> lite_all;
  241. ret = Split(lite_mat_bgr, lite_all);
  242. ASSERT_TRUE(ret == true);
  243. ASSERT_TRUE(lite_all.size() == 3);
  244. LiteMat lite_r = lite_all[2];
  245. cv::Mat dst_imageR(lite_r.height_, lite_r.width_, CV_8UC1, lite_r.data_ptr_);
  246. }
  247. TEST_F(MindDataImageProcess, testMerge) {
  248. std::string filename = "data/dataset/apple.jpg";
  249. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  250. std::vector<cv::Mat> dst_images;
  251. cv::split(src_image, dst_images);
  252. // convert to RGBA for Android bitmap(rgba)
  253. cv::Mat rgba_mat;
  254. cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
  255. bool ret = false;
  256. LiteMat lite_mat_bgr;
  257. ret =
  258. InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
  259. ASSERT_TRUE(ret == true);
  260. std::vector<LiteMat> lite_all;
  261. ret = Split(lite_mat_bgr, lite_all);
  262. ASSERT_TRUE(ret == true);
  263. ASSERT_TRUE(lite_all.size() == 3);
  264. LiteMat lite_r = lite_all[2];
  265. cv::Mat dst_imageR(lite_r.height_, lite_r.width_, CV_8UC1, lite_r.data_ptr_);
  266. LiteMat merge_mat;
  267. EXPECT_TRUE(Merge(lite_all, merge_mat));
  268. EXPECT_EQ(merge_mat.height_, lite_mat_bgr.height_);
  269. EXPECT_EQ(merge_mat.width_, lite_mat_bgr.width_);
  270. EXPECT_EQ(merge_mat.channel_, lite_mat_bgr.channel_);
  271. }
  272. void Lite1CImageProcess(LiteMat &lite_mat_bgr, LiteMat &lite_norm_mat_cut) {
  273. LiteMat lite_mat_resize;
  274. int ret = ResizeBilinear(lite_mat_bgr, lite_mat_resize, 256, 256);
  275. ASSERT_TRUE(ret == true);
  276. LiteMat lite_mat_convert_float;
  277. ret = ConvertTo(lite_mat_resize, lite_mat_convert_float);
  278. ASSERT_TRUE(ret == true);
  279. LiteMat lite_mat_cut;
  280. ret = Crop(lite_mat_convert_float, lite_mat_cut, 16, 16, 224, 224);
  281. ASSERT_TRUE(ret == true);
  282. std::vector<float> means = {0.485};
  283. std::vector<float> stds = {0.229};
  284. ret = SubStractMeanNormalize(lite_mat_cut, lite_norm_mat_cut, means, stds);
  285. ASSERT_TRUE(ret == true);
  286. return;
  287. }
  288. cv::Mat cv1CImageProcess(cv::Mat &image) {
  289. cv::Mat gray_image;
  290. cv::cvtColor(image, gray_image, CV_BGR2GRAY);
  291. cv::Mat resize_256_image;
  292. cv::resize(gray_image, resize_256_image, cv::Size(256, 256), CV_INTER_LINEAR);
  293. cv::Mat float_256_image;
  294. resize_256_image.convertTo(float_256_image, CV_32FC3);
  295. cv::Mat roi_224_image;
  296. cv::Rect roi;
  297. roi.x = 16;
  298. roi.y = 16;
  299. roi.width = 224;
  300. roi.height = 224;
  301. float_256_image(roi).copyTo(roi_224_image);
  302. float meanR = 0.485;
  303. float varR = 0.229;
  304. cv::Scalar mean = cv::Scalar(meanR);
  305. cv::Scalar var = cv::Scalar(varR);
  306. cv::Mat imgMean(roi_224_image.size(), CV_32FC1, mean);
  307. cv::Mat imgVar(roi_224_image.size(), CV_32FC1, var);
  308. cv::Mat imgR1 = roi_224_image - imgMean;
  309. cv::Mat imgR2 = imgR1 / imgVar;
  310. return imgR2;
  311. }
  312. TEST_F(MindDataImageProcess, test1C) {
  313. std::string filename = "data/dataset/apple.jpg";
  314. cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  315. cv::Mat cv_image = cv1CImageProcess(image);
  316. // convert to RGBA for Android bitmap(rgba)
  317. cv::Mat rgba_mat;
  318. cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
  319. LiteMat lite_mat_bgr;
  320. bool ret =
  321. InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
  322. ASSERT_TRUE(ret == true);
  323. LiteMat lite_norm_mat_cut;
  324. Lite1CImageProcess(lite_mat_bgr, lite_norm_mat_cut);
  325. cv::Mat dst_image(lite_norm_mat_cut.height_, lite_norm_mat_cut.width_, CV_32FC1, lite_norm_mat_cut.data_ptr_);
  326. CompareMat(cv_image, lite_norm_mat_cut);
  327. }
  328. TEST_F(MindDataImageProcess, TestPadd) {
  329. std::string filename = "data/dataset/apple.jpg";
  330. cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  331. int left = 10;
  332. int right = 20;
  333. int top = 30;
  334. int bottom = 40;
  335. cv::Mat b_image;
  336. cv::Scalar color = cv::Scalar(255, 255, 255);
  337. cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color);
  338. cv::Mat rgba_mat;
  339. cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
  340. LiteMat lite_mat_bgr;
  341. bool ret =
  342. InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
  343. ASSERT_TRUE(ret == true);
  344. ASSERT_TRUE(ret == true);
  345. LiteMat makeborder;
  346. ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
  347. ASSERT_TRUE(ret == true);
  348. size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_;
  349. double distance = 0.0f;
  350. for (size_t i = 0; i < total_size; i++) {
  351. distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2);
  352. }
  353. distance = sqrt(distance / total_size);
  354. EXPECT_EQ(distance, 0.0f);
  355. }
  356. TEST_F(MindDataImageProcess, TestPadZero) {
  357. std::string filename = "data/dataset/apple.jpg";
  358. cv::Mat image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  359. int left = 0;
  360. int right = 0;
  361. int top = 0;
  362. int bottom = 0;
  363. cv::Mat b_image;
  364. cv::Scalar color = cv::Scalar(255, 255, 255);
  365. cv::copyMakeBorder(image, b_image, top, bottom, left, right, cv::BORDER_CONSTANT, color);
  366. cv::Mat rgba_mat;
  367. cv::cvtColor(image, rgba_mat, CV_BGR2RGBA);
  368. LiteMat lite_mat_bgr;
  369. bool ret =
  370. InitFromPixel(rgba_mat.data, LPixelType::RGBA2BGR, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_bgr);
  371. ASSERT_TRUE(ret == true);
  372. ASSERT_TRUE(ret == true);
  373. LiteMat makeborder;
  374. ret = Pad(lite_mat_bgr, makeborder, top, bottom, left, right, PaddBorderType::PADD_BORDER_CONSTANT, 255, 255, 255);
  375. ASSERT_TRUE(ret == true);
  376. size_t total_size = makeborder.height_ * makeborder.width_ * makeborder.channel_;
  377. double distance = 0.0f;
  378. for (size_t i = 0; i < total_size; i++) {
  379. distance += pow((uint8_t)b_image.data[i] - ((uint8_t *)makeborder)[i], 2);
  380. }
  381. distance = sqrt(distance / total_size);
  382. EXPECT_EQ(distance, 0.0f);
  383. }
  384. TEST_F(MindDataImageProcess, TestGetDefaultBoxes) {
  385. std::string benchmark = "data/dataset/testLite/default_boxes.bin";
  386. BoxesConfig config;
  387. config.img_shape = {300, 300};
  388. config.num_default = {3, 6, 6, 6, 6, 6};
  389. config.feature_size = {19, 10, 5, 3, 2, 1};
  390. config.min_scale = 0.2;
  391. config.max_scale = 0.95;
  392. config.aspect_rations = {{2}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {2, 3}};
  393. config.steps = {16, 32, 64, 100, 150, 300};
  394. config.prior_scaling = {0.1, 0.2};
  395. int rows = 1917;
  396. int cols = 4;
  397. std::vector<double> benchmark_boxes(rows * cols);
  398. std::ifstream in(benchmark, std::ios::in | std::ios::binary);
  399. in.read(reinterpret_cast<char *>(benchmark_boxes.data()), benchmark_boxes.size() * sizeof(double));
  400. in.close();
  401. std::vector<std::vector<float>> default_boxes = GetDefaultBoxes(config);
  402. EXPECT_EQ(default_boxes.size(), rows);
  403. EXPECT_EQ(default_boxes[0].size(), cols);
  404. double distance = 0.0f;
  405. for (int i = 0; i < rows; i++) {
  406. for (int j = 0; j < cols; j++) {
  407. distance += pow(default_boxes[i][j] - benchmark_boxes[i * cols + j], 2);
  408. }
  409. }
  410. distance = sqrt(distance);
  411. EXPECT_LT(distance, 1e-5);
  412. }
  413. TEST_F(MindDataImageProcess, TestApplyNms) {
  414. std::vector<std::vector<float>> all_boxes = {{1, 1, 2, 2}, {3, 3, 4, 4}, {5, 5, 6, 6}, {5, 5, 6, 6}};
  415. std::vector<float> all_scores = {0.6, 0.5, 0.4, 0.9};
  416. std::vector<int> keep = ApplyNms(all_boxes, all_scores, 0.5, 10);
  417. ASSERT_TRUE(keep[0] == 3);
  418. ASSERT_TRUE(keep[1] == 0);
  419. ASSERT_TRUE(keep[2] == 1);
  420. }
  421. TEST_F(MindDataImageProcess, TestAffineInput) {
  422. LiteMat src(3, 3);
  423. LiteMat dst;
  424. double M[6] = {1};
  425. EXPECT_FALSE(Affine(src, dst, M, {}, UINT8_C1(0)));
  426. EXPECT_FALSE(Affine(src, dst, M, {3}, UINT8_C1(0)));
  427. EXPECT_FALSE(Affine(src, dst, M, {0, 0}, UINT8_C1(0)));
  428. }
  429. TEST_F(MindDataImageProcess, TestAffine) {
  430. // The input matrix
  431. // 0 0 1 0 0
  432. // 0 0 1 0 0
  433. // 2 2 3 2 2
  434. // 0 0 1 0 0
  435. // 0 0 1 0 0
  436. size_t rows = 5;
  437. size_t cols = 5;
  438. LiteMat src(rows, cols);
  439. for (size_t i = 0; i < rows; i++) {
  440. for (size_t j = 0; j < cols; j++) {
  441. if (i == 2 && j == 2) {
  442. static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 3;
  443. } else if (i == 2) {
  444. static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 2;
  445. } else if (j == 2) {
  446. static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 1;
  447. } else {
  448. static_cast<UINT8_C1 *>(src.data_ptr_)[i * cols + j] = 0;
  449. }
  450. }
  451. }
  452. // Expect output matrix
  453. // 0 0 2 0 0
  454. // 0 0 2 0 0
  455. // 1 1 3 1 1
  456. // 0 0 2 0 0
  457. // 0 0 2 0 0
  458. LiteMat expect(rows, cols);
  459. for (size_t i = 0; i < rows; i++) {
  460. for (size_t j = 0; j < cols; j++) {
  461. if (i == 2 && j == 2) {
  462. static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 3;
  463. } else if (i == 2) {
  464. static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 1;
  465. } else if (j == 2) {
  466. static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 2;
  467. } else {
  468. static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j] = 0;
  469. }
  470. }
  471. }
  472. double angle = 90.0f;
  473. cv::Point2f center(rows / 2, cols / 2);
  474. cv::Mat rotate_matrix = cv::getRotationMatrix2D(center, angle, 1.0);
  475. double M[6];
  476. for (size_t i = 0; i < 6; i++) {
  477. M[i] = rotate_matrix.at<double>(i);
  478. }
  479. LiteMat dst;
  480. EXPECT_TRUE(Affine(src, dst, M, {rows, cols}, UINT8_C1(0)));
  481. for (size_t i = 0; i < rows; i++) {
  482. for (size_t j = 0; j < cols; j++) {
  483. EXPECT_EQ(static_cast<UINT8_C1 *>(expect.data_ptr_)[i * cols + j].c1,
  484. static_cast<UINT8_C1 *>(dst.data_ptr_)[i * cols + j].c1);
  485. }
  486. }
  487. }
  488. TEST_F(MindDataImageProcess, TestSubtractUint8) {
  489. const size_t cols = 4;
  490. // Test uint8
  491. LiteMat src1_uint8(1, cols);
  492. LiteMat src2_uint8(1, cols);
  493. LiteMat expect_uint8(1, cols);
  494. for (size_t i = 0; i < cols; i++) {
  495. static_cast<UINT8_C1 *>(src1_uint8.data_ptr_)[i] = 3;
  496. static_cast<UINT8_C1 *>(src2_uint8.data_ptr_)[i] = 2;
  497. static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i] = 1;
  498. }
  499. LiteMat dst_uint8;
  500. EXPECT_TRUE(Subtract(src1_uint8, src2_uint8, &dst_uint8));
  501. for (size_t i = 0; i < cols; i++) {
  502. EXPECT_EQ(static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i].c1,
  503. static_cast<UINT8_C1 *>(dst_uint8.data_ptr_)[i].c1);
  504. }
  505. }
  506. TEST_F(MindDataImageProcess, TestSubtractInt8) {
  507. const size_t cols = 4;
  508. // Test int8
  509. LiteMat src1_int8(1, cols, LDataType(LDataType::INT8));
  510. LiteMat src2_int8(1, cols, LDataType(LDataType::INT8));
  511. LiteMat expect_int8(1, cols, LDataType(LDataType::INT8));
  512. for (size_t i = 0; i < cols; i++) {
  513. static_cast<INT8_C1 *>(src1_int8.data_ptr_)[i] = 2;
  514. static_cast<INT8_C1 *>(src2_int8.data_ptr_)[i] = 3;
  515. static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i] = -1;
  516. }
  517. LiteMat dst_int8;
  518. EXPECT_TRUE(Subtract(src1_int8, src2_int8, &dst_int8));
  519. for (size_t i = 0; i < cols; i++) {
  520. EXPECT_EQ(static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i].c1, static_cast<INT8_C1 *>(dst_int8.data_ptr_)[i].c1);
  521. }
  522. }
  523. TEST_F(MindDataImageProcess, TestSubtractUInt16) {
  524. const size_t cols = 4;
  525. // Test uint16
  526. LiteMat src1_uint16(1, cols, LDataType(LDataType::UINT16));
  527. LiteMat src2_uint16(1, cols, LDataType(LDataType::UINT16));
  528. LiteMat expect_uint16(1, cols, LDataType(LDataType::UINT16));
  529. for (size_t i = 0; i < cols; i++) {
  530. static_cast<UINT16_C1 *>(src1_uint16.data_ptr_)[i] = 2;
  531. static_cast<UINT16_C1 *>(src2_uint16.data_ptr_)[i] = 3;
  532. static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i] = 0;
  533. }
  534. LiteMat dst_uint16;
  535. EXPECT_TRUE(Subtract(src1_uint16, src2_uint16, &dst_uint16));
  536. for (size_t i = 0; i < cols; i++) {
  537. EXPECT_EQ(static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i].c1,
  538. static_cast<UINT16_C1 *>(dst_uint16.data_ptr_)[i].c1);
  539. }
  540. }
  541. TEST_F(MindDataImageProcess, TestSubtractInt16) {
  542. const size_t cols = 4;
  543. // Test int16
  544. LiteMat src1_int16(1, cols, LDataType(LDataType::INT16));
  545. LiteMat src2_int16(1, cols, LDataType(LDataType::INT16));
  546. LiteMat expect_int16(1, cols, LDataType(LDataType::INT16));
  547. for (size_t i = 0; i < cols; i++) {
  548. static_cast<INT16_C1 *>(src1_int16.data_ptr_)[i] = 2;
  549. static_cast<INT16_C1 *>(src2_int16.data_ptr_)[i] = 3;
  550. static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i] = -1;
  551. }
  552. LiteMat dst_int16;
  553. EXPECT_TRUE(Subtract(src1_int16, src2_int16, &dst_int16));
  554. for (size_t i = 0; i < cols; i++) {
  555. EXPECT_EQ(static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i].c1,
  556. static_cast<INT16_C1 *>(dst_int16.data_ptr_)[i].c1);
  557. }
  558. }
  559. TEST_F(MindDataImageProcess, TestSubtractUInt32) {
  560. const size_t cols = 4;
  561. // Test uint16
  562. LiteMat src1_uint32(1, cols, LDataType(LDataType::UINT32));
  563. LiteMat src2_uint32(1, cols, LDataType(LDataType::UINT32));
  564. LiteMat expect_uint32(1, cols, LDataType(LDataType::UINT32));
  565. for (size_t i = 0; i < cols; i++) {
  566. static_cast<UINT32_C1 *>(src1_uint32.data_ptr_)[i] = 2;
  567. static_cast<UINT32_C1 *>(src2_uint32.data_ptr_)[i] = 3;
  568. static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i] = 0;
  569. }
  570. LiteMat dst_uint32;
  571. EXPECT_TRUE(Subtract(src1_uint32, src2_uint32, &dst_uint32));
  572. for (size_t i = 0; i < cols; i++) {
  573. EXPECT_EQ(static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i].c1,
  574. static_cast<UINT32_C1 *>(dst_uint32.data_ptr_)[i].c1);
  575. }
  576. }
  577. TEST_F(MindDataImageProcess, TestSubtractInt32) {
  578. const size_t cols = 4;
  579. // Test int32
  580. LiteMat src1_int32(1, cols, LDataType(LDataType::INT32));
  581. LiteMat src2_int32(1, cols, LDataType(LDataType::INT32));
  582. LiteMat expect_int32(1, cols, LDataType(LDataType::INT32));
  583. for (size_t i = 0; i < cols; i++) {
  584. static_cast<INT32_C1 *>(src1_int32.data_ptr_)[i] = 2;
  585. static_cast<INT32_C1 *>(src2_int32.data_ptr_)[i] = 4;
  586. static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i] = -2;
  587. }
  588. LiteMat dst_int32;
  589. EXPECT_TRUE(Subtract(src1_int32, src2_int32, &dst_int32));
  590. for (size_t i = 0; i < cols; i++) {
  591. EXPECT_EQ(static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i].c1,
  592. static_cast<INT32_C1 *>(dst_int32.data_ptr_)[i].c1);
  593. }
  594. }
  595. TEST_F(MindDataImageProcess, TestSubtractFloat) {
  596. const size_t cols = 4;
  597. // Test float
  598. LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32));
  599. LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32));
  600. LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32));
  601. for (size_t i = 0; i < cols; i++) {
  602. static_cast<FLOAT32_C1 *>(src1_float.data_ptr_)[i] = 3.4;
  603. static_cast<FLOAT32_C1 *>(src2_float.data_ptr_)[i] = 5.7;
  604. static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i] = -2.3;
  605. }
  606. LiteMat dst_float;
  607. EXPECT_TRUE(Subtract(src1_float, src2_float, &dst_float));
  608. for (size_t i = 0; i < cols; i++) {
  609. EXPECT_FLOAT_EQ(static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i].c1,
  610. static_cast<FLOAT32_C1 *>(dst_float.data_ptr_)[i].c1);
  611. }
  612. }
  613. TEST_F(MindDataImageProcess, TestDivideUint8) {
  614. const size_t cols = 4;
  615. // Test uint8
  616. LiteMat src1_uint8(1, cols);
  617. LiteMat src2_uint8(1, cols);
  618. LiteMat expect_uint8(1, cols);
  619. for (size_t i = 0; i < cols; i++) {
  620. static_cast<UINT8_C1 *>(src1_uint8.data_ptr_)[i] = 8;
  621. static_cast<UINT8_C1 *>(src2_uint8.data_ptr_)[i] = 4;
  622. static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i] = 2;
  623. }
  624. LiteMat dst_uint8;
  625. EXPECT_TRUE(Divide(src1_uint8, src2_uint8, &dst_uint8));
  626. for (size_t i = 0; i < cols; i++) {
  627. EXPECT_EQ(static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i].c1,
  628. static_cast<UINT8_C1 *>(dst_uint8.data_ptr_)[i].c1);
  629. }
  630. }
  631. TEST_F(MindDataImageProcess, TestDivideInt8) {
  632. const size_t cols = 4;
  633. // Test int8
  634. LiteMat src1_int8(1, cols, LDataType(LDataType::INT8));
  635. LiteMat src2_int8(1, cols, LDataType(LDataType::INT8));
  636. LiteMat expect_int8(1, cols, LDataType(LDataType::INT8));
  637. for (size_t i = 0; i < cols; i++) {
  638. static_cast<INT8_C1 *>(src1_int8.data_ptr_)[i] = 8;
  639. static_cast<INT8_C1 *>(src2_int8.data_ptr_)[i] = -4;
  640. static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i] = -2;
  641. }
  642. LiteMat dst_int8;
  643. EXPECT_TRUE(Divide(src1_int8, src2_int8, &dst_int8));
  644. for (size_t i = 0; i < cols; i++) {
  645. EXPECT_EQ(static_cast<INT8_C1 *>(expect_int8.data_ptr_)[i].c1, static_cast<INT8_C1 *>(dst_int8.data_ptr_)[i].c1);
  646. }
  647. }
  648. TEST_F(MindDataImageProcess, TestDivideUInt16) {
  649. const size_t cols = 4;
  650. // Test uint16
  651. LiteMat src1_uint16(1, cols, LDataType(LDataType::UINT16));
  652. LiteMat src2_uint16(1, cols, LDataType(LDataType::UINT16));
  653. LiteMat expect_uint16(1, cols, LDataType(LDataType::UINT16));
  654. for (size_t i = 0; i < cols; i++) {
  655. static_cast<UINT16_C1 *>(src1_uint16.data_ptr_)[i] = 40000;
  656. static_cast<UINT16_C1 *>(src2_uint16.data_ptr_)[i] = 20000;
  657. static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i] = 2;
  658. }
  659. LiteMat dst_uint16;
  660. EXPECT_TRUE(Divide(src1_uint16, src2_uint16, &dst_uint16));
  661. for (size_t i = 0; i < cols; i++) {
  662. EXPECT_EQ(static_cast<UINT16_C1 *>(expect_uint16.data_ptr_)[i].c1,
  663. static_cast<UINT16_C1 *>(dst_uint16.data_ptr_)[i].c1);
  664. }
  665. }
  666. TEST_F(MindDataImageProcess, TestDivideInt16) {
  667. const size_t cols = 4;
  668. // Test int16
  669. LiteMat src1_int16(1, cols, LDataType(LDataType::INT16));
  670. LiteMat src2_int16(1, cols, LDataType(LDataType::INT16));
  671. LiteMat expect_int16(1, cols, LDataType(LDataType::INT16));
  672. for (size_t i = 0; i < cols; i++) {
  673. static_cast<INT16_C1 *>(src1_int16.data_ptr_)[i] = 30000;
  674. static_cast<INT16_C1 *>(src2_int16.data_ptr_)[i] = -3;
  675. static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i] = -10000;
  676. }
  677. LiteMat dst_int16;
  678. EXPECT_TRUE(Divide(src1_int16, src2_int16, &dst_int16));
  679. for (size_t i = 0; i < cols; i++) {
  680. EXPECT_EQ(static_cast<INT16_C1 *>(expect_int16.data_ptr_)[i].c1,
  681. static_cast<INT16_C1 *>(dst_int16.data_ptr_)[i].c1);
  682. }
  683. }
  684. TEST_F(MindDataImageProcess, TestDivideUInt32) {
  685. const size_t cols = 4;
  686. // Test uint16
  687. LiteMat src1_uint32(1, cols, LDataType(LDataType::UINT32));
  688. LiteMat src2_uint32(1, cols, LDataType(LDataType::UINT32));
  689. LiteMat expect_uint32(1, cols, LDataType(LDataType::UINT32));
  690. for (size_t i = 0; i < cols; i++) {
  691. static_cast<UINT32_C1 *>(src1_uint32.data_ptr_)[i] = 4000000000;
  692. static_cast<UINT32_C1 *>(src2_uint32.data_ptr_)[i] = 4;
  693. static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i] = 1000000000;
  694. }
  695. LiteMat dst_uint32;
  696. EXPECT_TRUE(Divide(src1_uint32, src2_uint32, &dst_uint32));
  697. for (size_t i = 0; i < cols; i++) {
  698. EXPECT_EQ(static_cast<UINT32_C1 *>(expect_uint32.data_ptr_)[i].c1,
  699. static_cast<UINT32_C1 *>(dst_uint32.data_ptr_)[i].c1);
  700. }
  701. }
  702. TEST_F(MindDataImageProcess, TestDivideInt32) {
  703. const size_t cols = 4;
  704. // Test int32
  705. LiteMat src1_int32(1, cols, LDataType(LDataType::INT32));
  706. LiteMat src2_int32(1, cols, LDataType(LDataType::INT32));
  707. LiteMat expect_int32(1, cols, LDataType(LDataType::INT32));
  708. for (size_t i = 0; i < cols; i++) {
  709. static_cast<INT32_C1 *>(src1_int32.data_ptr_)[i] = 2000000000;
  710. static_cast<INT32_C1 *>(src2_int32.data_ptr_)[i] = -2;
  711. static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i] = -1000000000;
  712. }
  713. LiteMat dst_int32;
  714. EXPECT_TRUE(Divide(src1_int32, src2_int32, &dst_int32));
  715. for (size_t i = 0; i < cols; i++) {
  716. EXPECT_EQ(static_cast<INT32_C1 *>(expect_int32.data_ptr_)[i].c1,
  717. static_cast<INT32_C1 *>(dst_int32.data_ptr_)[i].c1);
  718. }
  719. }
  720. TEST_F(MindDataImageProcess, TestDivideFloat) {
  721. const size_t cols = 4;
  722. // Test float
  723. LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32));
  724. LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32));
  725. LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32));
  726. for (size_t i = 0; i < cols; i++) {
  727. static_cast<FLOAT32_C1 *>(src1_float.data_ptr_)[i] = 12.34f;
  728. static_cast<FLOAT32_C1 *>(src2_float.data_ptr_)[i] = -2.0f;
  729. static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i] = -6.17f;
  730. }
  731. LiteMat dst_float;
  732. EXPECT_TRUE(Divide(src1_float, src2_float, &dst_float));
  733. for (size_t i = 0; i < cols; i++) {
  734. EXPECT_FLOAT_EQ(static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i].c1,
  735. static_cast<FLOAT32_C1 *>(dst_float.data_ptr_)[i].c1);
  736. }
  737. }
  738. TEST_F(MindDataImageProcess, TestMultiplyUint8) {
  739. const size_t cols = 4;
  740. // Test uint8
  741. LiteMat src1_uint8(1, cols);
  742. LiteMat src2_uint8(1, cols);
  743. LiteMat expect_uint8(1, cols);
  744. for (size_t i = 0; i < cols; i++) {
  745. static_cast<UINT8_C1 *>(src1_uint8.data_ptr_)[i] = 8;
  746. static_cast<UINT8_C1 *>(src2_uint8.data_ptr_)[i] = 4;
  747. static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i] = 32;
  748. }
  749. LiteMat dst_uint8;
  750. EXPECT_TRUE(Multiply(src1_uint8, src2_uint8, &dst_uint8));
  751. for (size_t i = 0; i < cols; i++) {
  752. EXPECT_EQ(static_cast<UINT8_C1 *>(expect_uint8.data_ptr_)[i].c1,
  753. static_cast<UINT8_C1 *>(dst_uint8.data_ptr_)[i].c1);
  754. }
  755. }
  756. TEST_F(MindDataImageProcess, TestMultiplyUInt16) {
  757. const size_t cols = 4;
  758. // Test int16
  759. LiteMat src1_int16(1, cols, LDataType(LDataType::UINT16));
  760. LiteMat src2_int16(1, cols, LDataType(LDataType::UINT16));
  761. LiteMat expect_int16(1, cols, LDataType(LDataType::UINT16));
  762. for (size_t i = 0; i < cols; i++) {
  763. static_cast<UINT16_C1 *>(src1_int16.data_ptr_)[i] = 60000;
  764. static_cast<UINT16_C1 *>(src2_int16.data_ptr_)[i] = 2;
  765. static_cast<UINT16_C1 *>(expect_int16.data_ptr_)[i] = 65535;
  766. }
  767. LiteMat dst_int16;
  768. EXPECT_TRUE(Multiply(src1_int16, src2_int16, &dst_int16));
  769. for (size_t i = 0; i < cols; i++) {
  770. EXPECT_EQ(static_cast<UINT16_C1 *>(expect_int16.data_ptr_)[i].c1,
  771. static_cast<UINT16_C1 *>(dst_int16.data_ptr_)[i].c1);
  772. }
  773. }
  774. TEST_F(MindDataImageProcess, TestMultiplyFloat) {
  775. const size_t cols = 4;
  776. // Test float
  777. LiteMat src1_float(1, cols, LDataType(LDataType::FLOAT32));
  778. LiteMat src2_float(1, cols, LDataType(LDataType::FLOAT32));
  779. LiteMat expect_float(1, cols, LDataType(LDataType::FLOAT32));
  780. for (size_t i = 0; i < cols; i++) {
  781. static_cast<FLOAT32_C1 *>(src1_float.data_ptr_)[i] = 30.0f;
  782. static_cast<FLOAT32_C1 *>(src2_float.data_ptr_)[i] = -2.0f;
  783. static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i] = -60.0f;
  784. }
  785. LiteMat dst_float;
  786. EXPECT_TRUE(Multiply(src1_float, src2_float, &dst_float));
  787. for (size_t i = 0; i < cols; i++) {
  788. EXPECT_FLOAT_EQ(static_cast<FLOAT32_C1 *>(expect_float.data_ptr_)[i].c1,
  789. static_cast<FLOAT32_C1 *>(dst_float.data_ptr_)[i].c1);
  790. }
  791. }
  792. TEST_F(MindDataImageProcess, TestExtractChannel) {
  793. LiteMat lite_single;
  794. LiteMat lite_mat = LiteMat(1, 4, 3, LDataType::UINT16);
  795. EXPECT_FALSE(ExtractChannel(lite_mat, lite_single, 0));
  796. EXPECT_TRUE(lite_single.IsEmpty());
  797. }
  798. TEST_F(MindDataImageProcess, testROI3C) {
  799. std::string filename = "data/dataset/apple.jpg";
  800. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  801. cv::Mat cv_roi = cv::Mat(src_image, cv::Rect(500, 500, 3000, 1500));
  802. cv::imwrite("./cv_roi.jpg", cv_roi);
  803. bool ret = false;
  804. LiteMat lite_mat_bgr;
  805. ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
  806. EXPECT_TRUE(ret);
  807. LiteMat lite_roi;
  808. ret = lite_mat_bgr.GetROI(500, 500, 3000, 1500, lite_roi);
  809. EXPECT_TRUE(ret);
  810. LiteMat lite_roi_save(3000, 1500, lite_roi.channel_, LDataType::UINT8);
  811. for (size_t i = 0; i < lite_roi.height_; i++) {
  812. const unsigned char *ptr = lite_roi.ptr<unsigned char>(i);
  813. size_t image_size = lite_roi.width_ * lite_roi.channel_ * sizeof(unsigned char);
  814. unsigned char *dst_ptr = (unsigned char *)lite_roi_save.data_ptr_ + image_size * i;
  815. (void)memcpy(dst_ptr, ptr, image_size);
  816. }
  817. cv::Mat dst_imageR(lite_roi_save.height_, lite_roi_save.width_, CV_8UC3, lite_roi_save.data_ptr_);
  818. cv::imwrite("./lite_roi.jpg", dst_imageR);
  819. }
  820. TEST_F(MindDataImageProcess, testROI3CFalse) {
  821. std::string filename = "data/dataset/apple.jpg";
  822. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  823. cv::Mat cv_roi = cv::Mat(src_image, cv::Rect(500, 500, 3000, 1500));
  824. cv::imwrite("./cv_roi.jpg", cv_roi);
  825. bool ret = false;
  826. LiteMat lite_mat_bgr;
  827. ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
  828. EXPECT_TRUE(ret);
  829. LiteMat lite_roi;
  830. ret = lite_mat_bgr.GetROI(500, 500, 1200, -100, lite_roi);
  831. EXPECT_FALSE(ret);
  832. }
  833. TEST_F(MindDataImageProcess, testROI1C) {
  834. std::string filename = "data/dataset/apple.jpg";
  835. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  836. cv::Mat gray_image;
  837. cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
  838. cv::Mat cv_roi_gray = cv::Mat(gray_image, cv::Rect(500, 500, 3000, 1500));
  839. cv::imwrite("./cv_roi_gray.jpg", cv_roi_gray);
  840. cv::Mat rgba_mat;
  841. cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
  842. bool ret = false;
  843. LiteMat lite_mat_gray;
  844. ret =
  845. InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
  846. EXPECT_TRUE(ret);
  847. LiteMat lite_roi_gray;
  848. ret = lite_mat_gray.GetROI(500, 500, 3000, 1500, lite_roi_gray);
  849. EXPECT_TRUE(ret);
  850. LiteMat lite_roi_gray_save(3000, 1500, lite_roi_gray.channel_, LDataType::UINT8);
  851. for (size_t i = 0; i < lite_roi_gray.height_; i++) {
  852. const unsigned char *ptr = lite_roi_gray.ptr<unsigned char>(i);
  853. size_t image_size = lite_roi_gray.width_ * lite_roi_gray.channel_ * sizeof(unsigned char);
  854. unsigned char *dst_ptr = (unsigned char *)lite_roi_gray_save.data_ptr_ + image_size * i;
  855. (void)memcpy(dst_ptr, ptr, image_size);
  856. }
  857. cv::Mat dst_imageR(lite_roi_gray_save.height_, lite_roi_gray_save.width_, CV_8UC1, lite_roi_gray_save.data_ptr_);
  858. cv::imwrite("./lite_roi.jpg", dst_imageR);
  859. }
  860. // warp
  861. TEST_F(MindDataImageProcess, testWarpAffineBGR) {
  862. std::string filename = "data/dataset/apple.jpg";
  863. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  864. cv::Point2f srcTri[3];
  865. cv::Point2f dstTri[3];
  866. srcTri[0] = cv::Point2f(0, 0);
  867. srcTri[1] = cv::Point2f(src_image.cols - 1, 0);
  868. srcTri[2] = cv::Point2f(0, src_image.rows - 1);
  869. dstTri[0] = cv::Point2f(src_image.cols * 0.0, src_image.rows * 0.33);
  870. dstTri[1] = cv::Point2f(src_image.cols * 0.85, src_image.rows * 0.25);
  871. dstTri[2] = cv::Point2f(src_image.cols * 0.15, src_image.rows * 0.7);
  872. cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
  873. ;
  874. cv::Mat warp_dstImage;
  875. cv::warpAffine(src_image, warp_dstImage, warp_mat, warp_dstImage.size());
  876. cv::imwrite("./warpAffine_cv_bgr.png", warp_dstImage);
  877. bool ret = false;
  878. LiteMat lite_mat_bgr;
  879. ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
  880. EXPECT_TRUE(ret);
  881. double *mat_ptr = warp_mat.ptr<double>(0);
  882. LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
  883. LiteMat lite_warp;
  884. std::vector<uint8_t> borderValues;
  885. borderValues.push_back(0);
  886. borderValues.push_back(0);
  887. borderValues.push_back(0);
  888. ret = WarpAffineBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_, lite_mat_bgr.height_,
  889. PADD_BORDER_CONSTANT, borderValues);
  890. EXPECT_TRUE(ret);
  891. cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
  892. cv::imwrite("./warpAffine_lite_bgr.png", dst_imageR);
  893. }
  894. TEST_F(MindDataImageProcess, testWarpAffineBGRScale) {
  895. std::string filename = "data/dataset/apple.jpg";
  896. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  897. cv::Point2f srcTri[3];
  898. cv::Point2f dstTri[3];
  899. srcTri[0] = cv::Point2f(10, 20);
  900. srcTri[1] = cv::Point2f(src_image.cols - 1 - 100, 0);
  901. srcTri[2] = cv::Point2f(0, src_image.rows - 1 - 300);
  902. dstTri[0] = cv::Point2f(src_image.cols * 0.22, src_image.rows * 0.33);
  903. dstTri[1] = cv::Point2f(src_image.cols * 0.87, src_image.rows * 0.75);
  904. dstTri[2] = cv::Point2f(src_image.cols * 0.35, src_image.rows * 0.37);
  905. cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
  906. ;
  907. cv::Mat warp_dstImage;
  908. cv::warpAffine(src_image, warp_dstImage, warp_mat, warp_dstImage.size());
  909. cv::imwrite("./warpAffine_cv_bgr_scale.png", warp_dstImage);
  910. bool ret = false;
  911. LiteMat lite_mat_bgr;
  912. ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
  913. EXPECT_TRUE(ret);
  914. double *mat_ptr = warp_mat.ptr<double>(0);
  915. LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
  916. LiteMat lite_warp;
  917. std::vector<uint8_t> borderValues;
  918. borderValues.push_back(0);
  919. borderValues.push_back(0);
  920. borderValues.push_back(0);
  921. ret = WarpAffineBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_, lite_mat_bgr.height_,
  922. PADD_BORDER_CONSTANT, borderValues);
  923. EXPECT_TRUE(ret);
  924. cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
  925. cv::imwrite("./warpAffine_lite_bgr_scale.png", dst_imageR);
  926. }
  927. TEST_F(MindDataImageProcess, testWarpAffineBGRResize) {
  928. std::string filename = "data/dataset/apple.jpg";
  929. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  930. cv::Point2f srcTri[3];
  931. cv::Point2f dstTri[3];
  932. srcTri[0] = cv::Point2f(10, 20);
  933. srcTri[1] = cv::Point2f(src_image.cols - 1 - 100, 0);
  934. srcTri[2] = cv::Point2f(0, src_image.rows - 1 - 300);
  935. dstTri[0] = cv::Point2f(src_image.cols * 0.22, src_image.rows * 0.33);
  936. dstTri[1] = cv::Point2f(src_image.cols * 0.87, src_image.rows * 0.75);
  937. dstTri[2] = cv::Point2f(src_image.cols * 0.35, src_image.rows * 0.37);
  938. cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
  939. ;
  940. cv::Mat warp_dstImage;
  941. cv::warpAffine(src_image, warp_dstImage, warp_mat, cv::Size(src_image.cols + 200, src_image.rows - 300));
  942. cv::imwrite("./warpAffine_cv_bgr_resize.png", warp_dstImage);
  943. bool ret = false;
  944. LiteMat lite_mat_bgr;
  945. ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
  946. EXPECT_TRUE(ret);
  947. double *mat_ptr = warp_mat.ptr<double>(0);
  948. LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
  949. LiteMat lite_warp;
  950. std::vector<uint8_t> borderValues;
  951. borderValues.push_back(0);
  952. borderValues.push_back(0);
  953. borderValues.push_back(0);
  954. ret = WarpAffineBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_ + 200, lite_mat_bgr.height_ - 300,
  955. PADD_BORDER_CONSTANT, borderValues);
  956. EXPECT_TRUE(ret);
  957. cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
  958. cv::imwrite("./warpAffine_lite_bgr_resize.png", dst_imageR);
  959. }
  960. TEST_F(MindDataImageProcess, testWarpAffineGray) {
  961. std::string filename = "data/dataset/apple.jpg";
  962. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  963. cv::Mat gray_image;
  964. cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
  965. cv::Point2f srcTri[3];
  966. cv::Point2f dstTri[3];
  967. srcTri[0] = cv::Point2f(0, 0);
  968. srcTri[1] = cv::Point2f(src_image.cols - 1, 0);
  969. srcTri[2] = cv::Point2f(0, src_image.rows - 1);
  970. dstTri[0] = cv::Point2f(src_image.cols * 0.0, src_image.rows * 0.33);
  971. dstTri[1] = cv::Point2f(src_image.cols * 0.85, src_image.rows * 0.25);
  972. dstTri[2] = cv::Point2f(src_image.cols * 0.15, src_image.rows * 0.7);
  973. cv::Mat warp_mat = cv::getAffineTransform(srcTri, dstTri);
  974. ;
  975. cv::Mat warp_gray_dstImage;
  976. cv::warpAffine(gray_image, warp_gray_dstImage, warp_mat, cv::Size(src_image.cols + 200, src_image.rows - 300));
  977. cv::imwrite("./warpAffine_cv_gray.png", warp_gray_dstImage);
  978. cv::Mat rgba_mat;
  979. cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
  980. bool ret = false;
  981. LiteMat lite_mat_gray;
  982. ret =
  983. InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
  984. EXPECT_TRUE(ret);
  985. double *mat_ptr = warp_mat.ptr<double>(0);
  986. LiteMat lite_M(3, 2, 1, mat_ptr, LDataType::DOUBLE);
  987. LiteMat lite_warp;
  988. std::vector<uint8_t> borderValues;
  989. borderValues.push_back(0);
  990. ret = WarpAffineBilinear(lite_mat_gray, lite_warp, lite_M, lite_mat_gray.width_ + 200, lite_mat_gray.height_ - 300,
  991. PADD_BORDER_CONSTANT, borderValues);
  992. EXPECT_TRUE(ret);
  993. cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC1, lite_warp.data_ptr_);
  994. cv::imwrite("./warpAffine_lite_gray.png", dst_imageR);
  995. }
  996. TEST_F(MindDataImageProcess, testWarpPerspectiveBGRResize) {
  997. std::string filename = "data/dataset/apple.jpg";
  998. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  999. cv::Point2f srcQuad[4], dstQuad[4];
  1000. srcQuad[0].x = 0;
  1001. srcQuad[0].y = 0;
  1002. srcQuad[1].x = src_image.cols - 1.;
  1003. srcQuad[1].y = 0;
  1004. srcQuad[2].x = 0;
  1005. srcQuad[2].y = src_image.rows - 1;
  1006. srcQuad[3].x = src_image.cols - 1;
  1007. srcQuad[3].y = src_image.rows - 1;
  1008. dstQuad[0].x = src_image.cols * 0.05;
  1009. dstQuad[0].y = src_image.rows * 0.33;
  1010. dstQuad[1].x = src_image.cols * 0.9;
  1011. dstQuad[1].y = src_image.rows * 0.25;
  1012. dstQuad[2].x = src_image.cols * 0.2;
  1013. dstQuad[2].y = src_image.rows * 0.7;
  1014. dstQuad[3].x = src_image.cols * 0.8;
  1015. dstQuad[3].y = src_image.rows * 0.9;
  1016. cv::Mat ptran = cv::getPerspectiveTransform(srcQuad, dstQuad, cv::DECOMP_SVD);
  1017. cv::Mat warp_dstImage;
  1018. cv::warpPerspective(src_image, warp_dstImage, ptran, cv::Size(src_image.cols + 200, src_image.rows - 300));
  1019. cv::imwrite("./warpPerspective_cv_bgr.png", warp_dstImage);
  1020. bool ret = false;
  1021. LiteMat lite_mat_bgr;
  1022. ret = InitFromPixel(src_image.data, LPixelType::BGR, LDataType::UINT8, src_image.cols, src_image.rows, lite_mat_bgr);
  1023. EXPECT_TRUE(ret);
  1024. double *mat_ptr = ptran.ptr<double>(0);
  1025. LiteMat lite_M(3, 3, 1, mat_ptr, LDataType::DOUBLE);
  1026. LiteMat lite_warp;
  1027. std::vector<uint8_t> borderValues;
  1028. borderValues.push_back(0);
  1029. borderValues.push_back(0);
  1030. borderValues.push_back(0);
  1031. ret = WarpPerspectiveBilinear(lite_mat_bgr, lite_warp, lite_M, lite_mat_bgr.width_ + 200, lite_mat_bgr.height_ - 300,
  1032. PADD_BORDER_CONSTANT, borderValues);
  1033. EXPECT_TRUE(ret);
  1034. cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC3, lite_warp.data_ptr_);
  1035. cv::imwrite("./warpPerspective_lite_bgr.png", dst_imageR);
  1036. }
  1037. TEST_F(MindDataImageProcess, testWarpPerspectiveGrayResize) {
  1038. std::string filename = "data/dataset/apple.jpg";
  1039. cv::Mat src_image = cv::imread(filename, cv::ImreadModes::IMREAD_COLOR);
  1040. cv::Mat gray_image;
  1041. cv::cvtColor(src_image, gray_image, CV_BGR2GRAY);
  1042. cv::Point2f srcQuad[4], dstQuad[4];
  1043. srcQuad[0].x = 0;
  1044. srcQuad[0].y = 0;
  1045. srcQuad[1].x = src_image.cols - 1.;
  1046. srcQuad[1].y = 0;
  1047. srcQuad[2].x = 0;
  1048. srcQuad[2].y = src_image.rows - 1;
  1049. srcQuad[3].x = src_image.cols - 1;
  1050. srcQuad[3].y = src_image.rows - 1;
  1051. dstQuad[0].x = src_image.cols * 0.05;
  1052. dstQuad[0].y = src_image.rows * 0.33;
  1053. dstQuad[1].x = src_image.cols * 0.9;
  1054. dstQuad[1].y = src_image.rows * 0.25;
  1055. dstQuad[2].x = src_image.cols * 0.2;
  1056. dstQuad[2].y = src_image.rows * 0.7;
  1057. dstQuad[3].x = src_image.cols * 0.8;
  1058. dstQuad[3].y = src_image.rows * 0.9;
  1059. cv::Mat ptran = cv::getPerspectiveTransform(srcQuad, dstQuad, cv::DECOMP_SVD);
  1060. cv::Mat warp_dstImage;
  1061. cv::warpPerspective(gray_image, warp_dstImage, ptran, cv::Size(gray_image.cols + 200, gray_image.rows - 300));
  1062. cv::imwrite("./warpPerspective_cv_gray.png", warp_dstImage);
  1063. cv::Mat rgba_mat;
  1064. cv::cvtColor(src_image, rgba_mat, CV_BGR2RGBA);
  1065. bool ret = false;
  1066. LiteMat lite_mat_gray;
  1067. ret =
  1068. InitFromPixel(rgba_mat.data, LPixelType::RGBA2GRAY, LDataType::UINT8, rgba_mat.cols, rgba_mat.rows, lite_mat_gray);
  1069. EXPECT_TRUE(ret);
  1070. double *mat_ptr = ptran.ptr<double>(0);
  1071. LiteMat lite_M(3, 3, 1, mat_ptr, LDataType::DOUBLE);
  1072. LiteMat lite_warp;
  1073. std::vector<uint8_t> borderValues;
  1074. borderValues.push_back(0);
  1075. ret = WarpPerspectiveBilinear(lite_mat_gray, lite_warp, lite_M, lite_mat_gray.width_ + 200,
  1076. lite_mat_gray.height_ - 300, PADD_BORDER_CONSTANT, borderValues);
  1077. EXPECT_TRUE(ret);
  1078. cv::Mat dst_imageR(lite_warp.height_, lite_warp.width_, CV_8UC1, lite_warp.data_ptr_);
  1079. cv::imwrite("./warpPerspective_lite_gray.png", dst_imageR);
  1080. }