You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 8.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train deeplabv3."""
  16. import os
  17. import argparse
  18. from mindspore import context
  19. from mindspore.train.model import ParallelMode, Model
  20. import mindspore.nn as nn
  21. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
  22. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  23. from mindspore.communication.management import init, get_rank, get_group_size
  24. from mindspore.train.callback import LossMonitor, TimeMonitor
  25. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  26. from src.data import data_generator
  27. from src.loss import loss
  28. from src.nets import net_factory
  29. from src.utils import learning_rates
  30. context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True, save_graphs=False,
  31. device_target="Ascend", device_id=int(os.getenv('DEVICE_ID')))
  32. class BuildTrainNetwork(nn.Cell):
  33. def __init__(self, network, criterion):
  34. super(BuildTrainNetwork, self).__init__()
  35. self.network = network
  36. self.criterion = criterion
  37. def construct(self, input_data, label):
  38. output = self.network(input_data)
  39. net_loss = self.criterion(output, label)
  40. return net_loss
  41. def parse_args():
  42. parser = argparse.ArgumentParser('mindspore deeplabv3 training')
  43. parser.add_argument('--train_dir', type=str, default='', help='where training log and ckpts saved')
  44. # dataset
  45. parser.add_argument('--data_file', type=str, default='', help='path and name of one mindrecord file')
  46. parser.add_argument('--batch_size', type=int, default=32, help='batch size')
  47. parser.add_argument('--crop_size', type=int, default=513, help='crop size')
  48. parser.add_argument('--image_mean', type=list, default=[103.53, 116.28, 123.675], help='image mean')
  49. parser.add_argument('--image_std', type=list, default=[57.375, 57.120, 58.395], help='image std')
  50. parser.add_argument('--min_scale', type=float, default=0.5, help='minimum scale of data argumentation')
  51. parser.add_argument('--max_scale', type=float, default=2.0, help='maximum scale of data argumentation')
  52. parser.add_argument('--ignore_label', type=int, default=255, help='ignore label')
  53. parser.add_argument('--num_classes', type=int, default=21, help='number of classes')
  54. # optimizer
  55. parser.add_argument('--train_epochs', type=int, default=300, help='epoch')
  56. parser.add_argument('--lr_type', type=str, default='cos', help='type of learning rate')
  57. parser.add_argument('--base_lr', type=float, default=0.015, help='base learning rate')
  58. parser.add_argument('--lr_decay_step', type=int, default=40000, help='learning rate decay step')
  59. parser.add_argument('--lr_decay_rate', type=float, default=0.1, help='learning rate decay rate')
  60. parser.add_argument('--loss_scale', type=float, default=3072.0, help='loss scale')
  61. # model
  62. parser.add_argument('--model', type=str, default='deeplab_v3_s16', help='select model')
  63. parser.add_argument('--freeze_bn', action='store_true', help='freeze bn')
  64. parser.add_argument('--ckpt_pre_trained', type=str, default='', help='pretrained model')
  65. # train
  66. parser.add_argument('--is_distributed', action='store_true', help='distributed training')
  67. parser.add_argument('--rank', type=int, default=0, help='local rank of distributed')
  68. parser.add_argument('--group_size', type=int, default=1, help='world size of distributed')
  69. parser.add_argument('--save_steps', type=int, default=3000, help='steps interval for saving')
  70. parser.add_argument('--keep_checkpoint_max', type=int, default=int, help='max checkpoint for saving')
  71. args, _ = parser.parse_known_args()
  72. return args
  73. def train():
  74. args = parse_args()
  75. # init multicards training
  76. if args.is_distributed:
  77. init()
  78. args.rank = get_rank()
  79. args.group_size = get_group_size()
  80. parallel_mode = ParallelMode.DATA_PARALLEL
  81. context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=args.group_size)
  82. # dataset
  83. dataset = data_generator.SegDataset(image_mean=args.image_mean,
  84. image_std=args.image_std,
  85. data_file=args.data_file,
  86. batch_size=args.batch_size,
  87. crop_size=args.crop_size,
  88. max_scale=args.max_scale,
  89. min_scale=args.min_scale,
  90. ignore_label=args.ignore_label,
  91. num_classes=args.num_classes,
  92. num_readers=2,
  93. num_parallel_calls=4,
  94. shard_id=args.rank,
  95. shard_num=args.group_size)
  96. dataset = dataset.get_dataset(repeat=1)
  97. # network
  98. if args.model == 'deeplab_v3_s16':
  99. network = net_factory.nets_map[args.model]('train', args.num_classes, 16, args.freeze_bn)
  100. elif args.model == 'deeplab_v3_s8':
  101. network = net_factory.nets_map[args.model]('train', args.num_classes, 8, args.freeze_bn)
  102. else:
  103. raise NotImplementedError('model [{:s}] not recognized'.format(args.model))
  104. # loss
  105. loss_ = loss.SoftmaxCrossEntropyLoss(args.num_classes, args.ignore_label)
  106. loss_.add_flags_recursive(fp32=True)
  107. train_net = BuildTrainNetwork(network, loss_)
  108. # load pretrained model
  109. if args.ckpt_pre_trained:
  110. param_dict = load_checkpoint(args.ckpt_pre_trained)
  111. load_param_into_net(train_net, param_dict)
  112. # optimizer
  113. iters_per_epoch = dataset.get_dataset_size()
  114. total_train_steps = iters_per_epoch * args.train_epochs
  115. if args.lr_type == 'cos':
  116. lr_iter = learning_rates.cosine_lr(args.base_lr, total_train_steps, total_train_steps)
  117. elif args.lr_type == 'poly':
  118. lr_iter = learning_rates.poly_lr(args.base_lr, total_train_steps, total_train_steps, end_lr=0.0, power=0.9)
  119. elif args.lr_type == 'exp':
  120. lr_iter = learning_rates.exponential_lr(args.base_lr, args.lr_decay_step, args.lr_decay_rate,
  121. total_train_steps, staircase=True)
  122. else:
  123. raise ValueError('unknown learning rate type')
  124. opt = nn.Momentum(params=train_net.trainable_params(), learning_rate=lr_iter, momentum=0.9, weight_decay=0.0001,
  125. loss_scale=args.loss_scale)
  126. # loss scale
  127. manager_loss_scale = FixedLossScaleManager(args.loss_scale, drop_overflow_update=False)
  128. model = Model(train_net, optimizer=opt, amp_level="O3", loss_scale_manager=manager_loss_scale)
  129. # callback for saving ckpts
  130. time_cb = TimeMonitor(data_size=iters_per_epoch)
  131. loss_cb = LossMonitor()
  132. cbs = [time_cb, loss_cb]
  133. if args.rank == 0:
  134. config_ck = CheckpointConfig(save_checkpoint_steps=args.save_steps,
  135. keep_checkpoint_max=args.keep_checkpoint_max)
  136. ckpoint_cb = ModelCheckpoint(prefix=args.model, directory=args.train_dir, config=config_ck)
  137. cbs.append(ckpoint_cb)
  138. model.train(args.train_epochs, dataset, callbacks=cbs)
  139. if __name__ == '__main__':
  140. train()