You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

eval.py 4.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Inference Interface"""
  16. import sys
  17. import os
  18. import argparse
  19. from mindspore.train.model import Model
  20. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  21. from mindspore.nn import Loss, Top1CategoricalAccuracy, Top5CategoricalAccuracy
  22. from mindspore import context
  23. from src.dataset import create_dataset_val
  24. from src.utils import count_params
  25. from src.loss import LabelSmoothingCrossEntropy
  26. from src.tinynet import tinynet
  27. parser = argparse.ArgumentParser(description='Evaluation')
  28. parser.add_argument('--data_path', type=str, default='/home/dataset/imagenet_jpeg/',
  29. metavar='DIR', help='path to dataset')
  30. parser.add_argument('--model', default='tinynet_c', type=str, metavar='MODEL',
  31. help='Name of model to train (default: "tinynet_c"')
  32. parser.add_argument('--num-classes', type=int, default=1000, metavar='N',
  33. help='number of label classes (default: 1000)')
  34. parser.add_argument('--smoothing', type=float, default=0.1,
  35. help='label smoothing (default: 0.1)')
  36. parser.add_argument('-b', '--batch-size', type=int, default=32, metavar='N',
  37. help='input batch size for training (default: 32)')
  38. parser.add_argument('-j', '--workers', type=int, default=4, metavar='N',
  39. help='how many training processes to use (default: 1)')
  40. parser.add_argument('--ckpt', type=str, default=None,
  41. help='model checkpoint to load')
  42. parser.add_argument('--GPU', action='store_true', default=True,
  43. help='Use GPU for training (default: True)')
  44. parser.add_argument('--dataset_sink', action='store_true', default=True)
  45. def main():
  46. """Main entrance for training"""
  47. args = parser.parse_args()
  48. print(sys.argv)
  49. context.set_context(mode=context.GRAPH_MODE)
  50. if args.GPU:
  51. context.set_context(device_target='GPU')
  52. # parse model argument
  53. assert args.model.startswith(
  54. "tinynet"), "Only Tinynet models are supported."
  55. _, sub_name = args.model.split("_")
  56. net = tinynet(sub_model=sub_name,
  57. num_classes=args.num_classes,
  58. drop_rate=0.0,
  59. drop_connect_rate=0.0,
  60. global_pool="avg",
  61. bn_tf=False,
  62. bn_momentum=None,
  63. bn_eps=None)
  64. print("Total number of parameters:", count_params(net))
  65. input_size = net.default_cfg['input_size'][1]
  66. val_data_url = os.path.join(args.data_path, 'val')
  67. val_dataset = create_dataset_val(args.batch_size,
  68. val_data_url,
  69. workers=args.workers,
  70. distributed=False,
  71. input_size=input_size)
  72. loss = LabelSmoothingCrossEntropy(smooth_factor=args.smoothing,
  73. num_classes=args.num_classes)
  74. loss.add_flags_recursive(fp32=True, fp16=False)
  75. eval_metrics = {'Validation-Loss': Loss(),
  76. 'Top1-Acc': Top1CategoricalAccuracy(),
  77. 'Top5-Acc': Top5CategoricalAccuracy()}
  78. ckpt = load_checkpoint(args.ckpt)
  79. load_param_into_net(net, ckpt)
  80. net.set_train(False)
  81. model = Model(net, loss, metrics=eval_metrics)
  82. metrics = model.eval(val_dataset, dataset_sink_mode=False)
  83. print(metrics)
  84. if __name__ == '__main__':
  85. main()