You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 8.0 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Face Recognition train."""
  16. import os
  17. import time
  18. import argparse
  19. import datetime
  20. import warnings
  21. import random
  22. import numpy as np
  23. import mindspore
  24. from mindspore import context
  25. from mindspore import Tensor
  26. from mindspore.context import ParallelMode
  27. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  28. from mindspore.train.callback import ModelCheckpoint, RunContext, _InternalCallbackParam, CheckpointConfig
  29. from mindspore.nn.optim import SGD
  30. from mindspore.nn import TrainOneStepCell
  31. from mindspore.communication.management import get_group_size, init, get_rank
  32. from src.dataset import get_de_dataset
  33. from src.config import reid_1p_cfg, reid_8p_cfg
  34. from src.lr_generator import step_lr
  35. from src.log import get_logger, AverageMeter
  36. from src.reid import SphereNet, CombineMarginFCFp16, BuildTrainNetworkWithHead
  37. from src.loss import CrossEntropy
  38. warnings.filterwarnings('ignore')
  39. devid = int(os.getenv('DEVICE_ID'))
  40. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=True, device_id=devid)
  41. random.seed(1)
  42. np.random.seed(1)
  43. def main():
  44. parser = argparse.ArgumentParser(description='Cifar10 classification')
  45. parser.add_argument('--is_distributed', type=int, default=0, help='if multi device')
  46. parser.add_argument('--data_dir', type=str, default='', help='image label list file, e.g. /home/label.txt')
  47. parser.add_argument('--pretrained', type=str, default='', help='pretrained model to load')
  48. args = parser.parse_args()
  49. if args.is_distributed == 0:
  50. cfg = reid_1p_cfg
  51. else:
  52. cfg = reid_8p_cfg
  53. cfg.pretrained = args.pretrained
  54. cfg.data_dir = args.data_dir
  55. # Init distributed
  56. if args.is_distributed:
  57. init()
  58. cfg.local_rank = get_rank()
  59. cfg.world_size = get_group_size()
  60. parallel_mode = ParallelMode.DATA_PARALLEL
  61. else:
  62. parallel_mode = ParallelMode.STAND_ALONE
  63. # parallel_mode 'STAND_ALONE' do not support parameter_broadcast and mirror_mean
  64. context.set_auto_parallel_context(parallel_mode=parallel_mode, device_num=cfg.world_size,
  65. gradients_mean=True)
  66. mindspore.common.set_seed(1)
  67. # logger
  68. cfg.outputs_dir = os.path.join(cfg.ckpt_path, datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
  69. cfg.logger = get_logger(cfg.outputs_dir, cfg.local_rank)
  70. loss_meter = AverageMeter('loss')
  71. # Show cfg
  72. cfg.logger.save_args(cfg)
  73. # dataloader
  74. cfg.logger.info('start create dataloader')
  75. de_dataset, steps_per_epoch, class_num = get_de_dataset(cfg)
  76. cfg.steps_per_epoch = steps_per_epoch
  77. cfg.logger.info('step per epoch: ' + str(cfg.steps_per_epoch))
  78. de_dataloader = de_dataset.create_tuple_iterator()
  79. cfg.logger.info('class num original: ' + str(class_num))
  80. if class_num % 16 != 0:
  81. class_num = (class_num // 16 + 1) * 16
  82. cfg.class_num = class_num
  83. cfg.logger.info('change the class num to :' + str(cfg.class_num))
  84. cfg.logger.info('end create dataloader')
  85. # backbone and loss
  86. cfg.logger.important_info('start create network')
  87. create_network_start = time.time()
  88. network = SphereNet(num_layers=cfg.net_depth, feature_dim=cfg.embedding_size, shape=cfg.input_size)
  89. head = CombineMarginFCFp16(embbeding_size=cfg.embedding_size, classnum=cfg.class_num)
  90. criterion = CrossEntropy()
  91. # load the pretrained model
  92. if os.path.isfile(cfg.pretrained):
  93. param_dict = load_checkpoint(cfg.pretrained)
  94. param_dict_new = {}
  95. for key, values in param_dict.items():
  96. if key.startswith('moments.'):
  97. continue
  98. elif key.startswith('network.'):
  99. param_dict_new[key[8:]] = values
  100. else:
  101. param_dict_new[key] = values
  102. load_param_into_net(network, param_dict_new)
  103. cfg.logger.info('load model {} success'.format(cfg.pretrained))
  104. # mixed precision training
  105. network.add_flags_recursive(fp16=True)
  106. head.add_flags_recursive(fp16=True)
  107. criterion.add_flags_recursive(fp32=True)
  108. train_net = BuildTrainNetworkWithHead(network, head, criterion)
  109. # optimizer and lr scheduler
  110. lr = step_lr(lr=cfg.lr, epoch_size=cfg.epoch_size, steps_per_epoch=cfg.steps_per_epoch, max_epoch=cfg.max_epoch,
  111. gamma=cfg.lr_gamma)
  112. opt = SGD(params=train_net.trainable_params(), learning_rate=lr, momentum=cfg.momentum,
  113. weight_decay=cfg.weight_decay, loss_scale=cfg.loss_scale)
  114. # package training process, adjust lr + forward + backward + optimizer
  115. train_net = TrainOneStepCell(train_net, opt, sens=cfg.loss_scale)
  116. # checkpoint save
  117. if cfg.local_rank == 0:
  118. ckpt_max_num = cfg.max_epoch * cfg.steps_per_epoch // cfg.ckpt_interval
  119. train_config = CheckpointConfig(save_checkpoint_steps=cfg.ckpt_interval, keep_checkpoint_max=ckpt_max_num)
  120. ckpt_cb = ModelCheckpoint(config=train_config, directory=cfg.outputs_dir, prefix='{}'.format(cfg.local_rank))
  121. cb_params = _InternalCallbackParam()
  122. cb_params.train_network = train_net
  123. cb_params.epoch_num = ckpt_max_num
  124. cb_params.cur_epoch_num = 1
  125. run_context = RunContext(cb_params)
  126. ckpt_cb.begin(run_context)
  127. train_net.set_train()
  128. t_end = time.time()
  129. t_epoch = time.time()
  130. old_progress = -1
  131. cfg.logger.important_info('====start train====')
  132. for i, total_data in enumerate(de_dataloader):
  133. data, gt = total_data
  134. data = Tensor(data)
  135. gt = Tensor(gt)
  136. loss = train_net(data, gt)
  137. loss_meter.update(loss.asnumpy())
  138. # ckpt
  139. if cfg.local_rank == 0:
  140. cb_params.cur_step_num = i + 1 # current step number
  141. cb_params.batch_num = i + 2
  142. ckpt_cb.step_end(run_context)
  143. # logging loss, fps, ...
  144. if i == 0:
  145. time_for_graph_compile = time.time() - create_network_start
  146. cfg.logger.important_info('{}, graph compile time={:.2f}s'.format(cfg.task, time_for_graph_compile))
  147. if i % cfg.log_interval == 0 and cfg.local_rank == 0:
  148. time_used = time.time() - t_end
  149. epoch = int(i / cfg.steps_per_epoch)
  150. fps = cfg.per_batch_size * (i - old_progress) * cfg.world_size / time_used
  151. cfg.logger.info('epoch[{}], iter[{}], {}, {:.2f} imgs/sec, lr={}'.format(epoch, i, loss_meter, fps, lr[i]))
  152. t_end = time.time()
  153. loss_meter.reset()
  154. old_progress = i
  155. if i % cfg.steps_per_epoch == 0 and cfg.local_rank == 0:
  156. epoch_time_used = time.time() - t_epoch
  157. epoch = int(i / cfg.steps_per_epoch)
  158. fps = cfg.per_batch_size * cfg.world_size * cfg.steps_per_epoch / epoch_time_used
  159. cfg.logger.info('=================================================')
  160. cfg.logger.info('epoch time: epoch[{}], iter[{}], {:.2f} imgs/sec'.format(epoch, i, fps))
  161. cfg.logger.info('=================================================')
  162. t_epoch = time.time()
  163. cfg.logger.important_info('====train end====')
  164. if __name__ == "__main__":
  165. main()