You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 17 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363
  1. # Contents
  2. - [FasterRcnn Description](#fasterrcnn-description)
  3. - [Model Architecture](#model-architecture)
  4. - [Dataset](#dataset)
  5. - [Environment Requirements](#environment-requirements)
  6. - [Quick Start](#quick-start)
  7. - [Run in docker](#Run-in-docker)
  8. - [Script Description](#script-description)
  9. - [Script and Sample Code](#script-and-sample-code)
  10. - [Training Process](#training-process)
  11. - [Training Usage](#usage)
  12. - [Training Result](#result)
  13. - [Evaluation Process](#evaluation-process)
  14. - [Evaluation Usage](#usage)
  15. - [Evaluation Result](#result)
  16. - [Model Description](#model-description)
  17. - [Performance](#performance)
  18. - [Evaluation Performance](#evaluation-performance)
  19. - [Inference Performance](#inference-performance)
  20. - [ModelZoo Homepage](#modelzoo-homepage)
  21. # FasterRcnn Description
  22. Before FasterRcnn, the target detection networks rely on the region proposal algorithm to assume the location of targets, such as SPPnet and Fast R-CNN. Progress has reduced the running time of these detection networks, but it also reveals that the calculation of the region proposal is a bottleneck.
  23. FasterRcnn proposed that convolution feature maps based on region detectors (such as Fast R-CNN) can also be used to generate region proposals. At the top of these convolution features, a Region Proposal Network (RPN) is constructed by adding some additional convolution layers (which share the convolution characteristics of the entire image with the detection network, thus making it possible to make regions almost costlessProposal), outputting both region bounds and objectness score for each location.Therefore, RPN is a full convolutional network (FCN), which can be trained end-to-end, generate high-quality region proposals, and then fed into Fast R-CNN for detection.
  24. [Paper](https://arxiv.org/abs/1506.01497): Ren S , He K , Girshick R , et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6).
  25. # Model Architecture
  26. FasterRcnn is a two-stage target detection network,This network uses a region proposal network (RPN), which can share the convolution features of the whole image with the detection network, so that the calculation of region proposal is almost cost free. The whole network further combines RPN and FastRcnn into a network by sharing the convolution features.
  27. # Dataset
  28. Note that you can run the scripts based on the dataset mentioned in original paper or widely used in relevant domain/network architecture. In the following sections, we will introduce how to run the scripts using the related dataset below.
  29. Dataset used: [COCO2017](<https://cocodataset.org/>)
  30. - Dataset size:19G
  31. - Train:18G,118000 images
  32. - Val:1G,5000 images
  33. - Annotations:241M,instances,captions,person_keypoints etc
  34. - Data format:image and json files
  35. - Note:Data will be processed in dataset.py
  36. # Environment Requirements
  37. - Hardware(Ascend)
  38. - Prepare hardware environment with Ascend processor. If you want to try Ascend, please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
  39. - Docker base image
  40. - [Ascend Hub](ascend.huawei.com/ascendhub/#/home)
  41. - Install [MindSpore](https://www.mindspore.cn/install/en).
  42. - Download the dataset COCO2017.
  43. - We use COCO2017 as training dataset in this example by default, and you can also use your own datasets.
  44. 1. If coco dataset is used. **Select dataset to coco when run script.**
  45. Install Cython and pycocotool, and you can also install mmcv to process data.
  46. ```pip
  47. pip install Cython
  48. pip install pycocotools
  49. pip install mmcv==0.2.14
  50. ```
  51. And change the COCO_ROOT and other settings you need in `config.py`. The directory structure is as follows:
  52. ```path
  53. .
  54. └─cocodataset
  55. ├─annotations
  56. ├─instance_train2017.json
  57. └─instance_val2017.json
  58. ├─val2017
  59. └─train2017
  60. ```
  61. 2. If your own dataset is used. **Select dataset to other when run script.**
  62. Organize the dataset information into a TXT file, each row in the file is as follows:
  63. ```log
  64. train2017/0000001.jpg 0,259,401,459,7 35,28,324,201,2 0,30,59,80,2
  65. ```
  66. Each row is an image annotation which split by space, the first column is a relative path of image, the others are box and class infomations of the format [xmin,ymin,xmax,ymax,class]. We read image from an image path joined by the `IMAGE_DIR`(dataset directory) and the relative path in `ANNO_PATH`(the TXT file path), `IMAGE_DIR` and `ANNO_PATH` are setting in `config.py`.
  67. # Quick Start
  68. After installing MindSpore via the official website, you can start training and evaluation as follows:
  69. Note: 1.the first run will generate the mindeocrd file, which will take a long time.
  70. 2.pretrained model is a resnet50 checkpoint that trained over ImageNet2012.you can train it with [resnet50](https://gitee.com/qujianwei/mindspore/tree/master/model_zoo/official/cv/resnet) scripts in modelzoo, and use src/convert_checkpoint.py to get the pretrain model.
  71. 3.BACKBONE_MODEL is a checkpoint file trained with [resnet50](https://gitee.com/qujianwei/mindspore/tree/master/model_zoo/official/cv/resnet) scripts in modelzoo.PRETRAINED_MODEL is a checkpoint file after convert.VALIDATION_JSON_FILE is label file. CHECKPOINT_PATH is a checkpoint file after trained.
  72. ```shell
  73. # convert checkpoint
  74. python convert_checkpoint.py --ckpt_file=[BACKBONE_MODEL]
  75. # standalone training
  76. sh run_standalone_train_ascend.sh [PRETRAINED_MODEL]
  77. # distributed training
  78. sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL]
  79. # eval
  80. sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH]
  81. # inference
  82. sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH]
  83. ```
  84. # Run in docker
  85. 1. Build docker images
  86. ```shell
  87. # build docker
  88. docker build -t fasterrcnn:20.1.0 . --build-arg FROM_IMAGE_NAME=ascend-mindspore-arm:20.1.0
  89. ```
  90. 2. Create a container layer over the created image and start it
  91. ```shell
  92. # start docker
  93. bash scripts/docker_start.sh fasterrcnn:20.1.0 [DATA_DIR] [MODEL_DIR]
  94. ```
  95. 3. Train
  96. ```shell
  97. # standalone training
  98. sh run_standalone_train_ascend.sh [PRETRAINED_MODEL]
  99. # distributed training
  100. sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL]
  101. ```
  102. 4. Eval
  103. ```shell
  104. # eval
  105. sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH]
  106. ```
  107. 5. Inference
  108. ```shell
  109. # inference
  110. sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH]
  111. ```
  112. # Script Description
  113. ## Script and Sample Code
  114. ```shell
  115. .
  116. └─faster_rcnn
  117. ├─README.md // descriptions about fasterrcnn
  118. ├─ascend310_infer //application for 310 inference
  119. ├─scripts
  120. ├─run_standalone_train_ascend.sh // shell script for standalone on ascend
  121. ├─run_distribute_train_ascend.sh // shell script for distributed on ascend
  122. ├─run_infer_310.sh // shell script for 310 inference
  123. └─run_eval_ascend.sh // shell script for eval on ascend
  124. ├─src
  125. ├─FasterRcnn
  126. ├─__init__.py // init file
  127. ├─anchor_generator.py // anchor generator
  128. ├─bbox_assign_sample.py // first stage sampler
  129. ├─bbox_assign_sample_stage2.py // second stage sampler
  130. ├─faster_rcnn_r50.py // fasterrcnn network
  131. ├─fpn_neck.py //feature pyramid network
  132. ├─proposal_generator.py // proposal generator
  133. ├─rcnn.py // rcnn network
  134. ├─resnet50.py // backbone network
  135. ├─roi_align.py // roi align network
  136. └─rpn.py // region proposal network
  137. ├─aipp.cfg // aipp config file
  138. ├─config.py // total config
  139. ├─dataset.py // create dataset and process dataset
  140. ├─lr_schedule.py // learning ratio generator
  141. ├─network_define.py // network define for fasterrcnn
  142. └─util.py // routine operation
  143. ├─export.py // script to export AIR,MINDIR,ONNX model
  144. ├─eval.py //eval scripts
  145. ├─postprogress.py // post process for 310 inference
  146. └─train.py // train scripts
  147. ```
  148. ## Training Process
  149. ### Usage
  150. ```shell
  151. # standalone training on ascend
  152. sh run_standalone_train_ascend.sh [PRETRAINED_MODEL]
  153. # distributed training on ascend
  154. sh run_distribute_train_ascend.sh [RANK_TABLE_FILE] [PRETRAINED_MODEL]
  155. ```
  156. Notes:
  157. 1. Rank_table.json which is specified by RANK_TABLE_FILE is needed when you are running a distribute task. You can generate it by using the [hccl_tools](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools).
  158. 2. As for PRETRAINED_MODEL,it should be a trained ResNet50 checkpoint. If you need to load Ready-made pretrained FasterRcnn checkpoint, you may make changes to the train.py script as follows.
  159. ```python
  160. # Comment out the following code
  161. # load_path = args_opt.pre_trained
  162. # if load_path != "":
  163. # param_dict = load_checkpoint(load_path)
  164. # for item in list(param_dict.keys()):
  165. # if not item.startswith('backbone'):
  166. # param_dict.pop(item)
  167. # load_param_into_net(net, param_dict)
  168. # Add the following codes after optimizer definition since the FasterRcnn checkpoint includes optimizer parameters:
  169. lr = Tensor(dynamic_lr(config, rank_size=device_num), mstype.float32)
  170. opt = SGD(params=net.trainable_params(), learning_rate=lr, momentum=config.momentum,
  171. weight_decay=config.weight_decay, loss_scale=config.loss_scale)
  172. if load_path != "":
  173. param_dict = load_checkpoint(load_path)
  174. for item in list(param_dict.keys()):
  175. if item in ("global_step", "learning_rate") or "rcnn.reg_scores" in item or "rcnn.cls_scores" in item:
  176. param_dict.pop(item)
  177. load_param_into_net(opt, param_dict)
  178. load_param_into_net(net, param_dict)
  179. ```
  180. 3. The original dataset path needs to be in the config.py,you can select "coco_root" or "image_dir".
  181. ### Result
  182. Training result will be stored in the example path, whose folder name begins with "train" or "train_parallel". You can find checkpoint file together with result like the followings in loss_rankid.log.
  183. ```log
  184. # distribute training result(8p)
  185. epoch: 1 step: 7393, rpn_loss: 0.12054, rcnn_loss: 0.40601, rpn_cls_loss: 0.04025, rpn_reg_loss: 0.08032, rcnn_cls_loss: 0.25854, rcnn_reg_loss: 0.14746, total_loss: 0.52655
  186. epoch: 2 step: 7393, rpn_loss: 0.06561, rcnn_loss: 0.50293, rpn_cls_loss: 0.02587, rpn_reg_loss: 0.03967, rcnn_cls_loss: 0.35669, rcnn_reg_loss: 0.14624, total_loss: 0.56854
  187. epoch: 3 step: 7393, rpn_loss: 0.06940, rcnn_loss: 0.49658, rpn_cls_loss: 0.03769, rpn_reg_loss: 0.03165, rcnn_cls_loss: 0.36353, rcnn_reg_loss: 0.13318, total_loss: 0.56598
  188. ...
  189. epoch: 10 step: 7393, rpn_loss: 0.03555, rcnn_loss: 0.32666, rpn_cls_loss: 0.00697, rpn_reg_loss: 0.02859, rcnn_cls_loss: 0.16125, rcnn_reg_loss: 0.16541, total_loss: 0.36221
  190. epoch: 11 step: 7393, rpn_loss: 0.19849, rcnn_loss: 0.47827, rpn_cls_loss: 0.11639, rpn_reg_loss: 0.08209, rcnn_cls_loss: 0.29712, rcnn_reg_loss: 0.18115, total_loss: 0.67676
  191. epoch: 12 step: 7393, rpn_loss: 0.00691, rcnn_loss: 0.10168, rpn_cls_loss: 0.00529, rpn_reg_loss: 0.00162, rcnn_cls_loss: 0.05426, rcnn_reg_loss: 0.04745, total_loss: 0.10859
  192. ```
  193. ## Evaluation Process
  194. ### Usage
  195. ```shell
  196. # eval on ascend
  197. sh run_eval_ascend.sh [VALIDATION_JSON_FILE] [CHECKPOINT_PATH]
  198. ```
  199. > checkpoint can be produced in training process.
  200. ### Result
  201. Eval result will be stored in the example path, whose folder name is "eval". Under this, you can find result like the followings in log.
  202. ```log
  203. Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.360
  204. Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.586
  205. Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.385
  206. Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.229
  207. Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.402
  208. Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.441
  209. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.299
  210. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.487
  211. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.515
  212. Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.346
  213. Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.562
  214. Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.631
  215. ```
  216. ## Model Export
  217. ```shell
  218. python export.py --ckpt_file [CKPT_PATH] --device_target [DEVICE_TARGET] --file_format[EXPORT_FORMAT]
  219. ```
  220. `EXPORT_FORMAT` should be in ["AIR", "ONNX", "MINDIR"]
  221. ## Inference Process
  222. ### Usage
  223. Before performing inference, the air file must bu exported by export script on the Ascend910 environment.
  224. ```shell
  225. # Ascend310 inference
  226. sh run_infer_310.sh [AIR_PATH] [DATA_PATH] [ANN_FILE_PATH]
  227. ```
  228. ### result
  229. Inference result is saved in current path, you can find result like this in acc.log file.
  230. ```log
  231. Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.349
  232. Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.570
  233. Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.369
  234. Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.211
  235. Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.391
  236. Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.435
  237. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.295
  238. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.476
  239. Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.503
  240. Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.330
  241. Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.547
  242. Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.622
  243. ```
  244. # Model Description
  245. ## Performance
  246. ### Evaluation Performance
  247. | Parameters | Ascend |
  248. | -------------------------- | ----------------------------------------------------------- |
  249. | Model Version | V1 |
  250. | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G |
  251. | uploaded Date | 08/31/2020 (month/day/year) |
  252. | MindSpore Version | 1.0.0 |
  253. | Dataset | COCO2017 |
  254. | Training Parameters | epoch=12, batch_size=2 |
  255. | Optimizer | SGD |
  256. | Loss Function | Softmax Cross Entropy ,Sigmoid Cross Entropy,SmoothL1Loss |
  257. | Speed | 1pc: 190 ms/step; 8pcs: 200 ms/step |
  258. | Total time | 1pc: 37.17 hours; 8pcs: 4.89 hours |
  259. | Parameters (M) | 250 |
  260. | Scripts | [fasterrcnn script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/faster_rcnn) |
  261. ### Inference Performance
  262. | Parameters | Ascend |
  263. | ------------------- | --------------------------- |
  264. | Model Version | V1 |
  265. | Resource | Ascend 910 |
  266. | Uploaded Date | 08/31/2020 (month/day/year) |
  267. | MindSpore Version | 1.0.0 |
  268. | Dataset | COCO2017 |
  269. | batch_size | 2 |
  270. | outputs | mAP |
  271. | Accuracy | IoU=0.50: 57.6% |
  272. | Model for inference | 250M (.ckpt file) |
  273. # [ModelZoo Homepage](#contents)
  274. Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).