You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.2 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """textrcnn export ckpt file to mindir/air"""
  16. import os
  17. import argparse
  18. import numpy as np
  19. from mindspore import Tensor, context, load_checkpoint, load_param_into_net, export
  20. from src.textrcnn import textrcnn
  21. from src.config import textrcnn_cfg as config
  22. parser = argparse.ArgumentParser(description="textrcnn")
  23. parser.add_argument("--device_id", type=int, default=0, help="Device id")
  24. parser.add_argument("--ckpt_file", type=str, required=True, help="textrcnn ckpt file.")
  25. parser.add_argument("--file_name", type=str, default="textrcnn", help="textrcnn output file name.")
  26. parser.add_argument("--file_format", type=str, choices=["AIR", "MINDIR"],
  27. default="MINDIR", help="file format")
  28. parser.add_argument("--device_target", type=str, choices=["Ascend"], default="Ascend",
  29. help="device target")
  30. args = parser.parse_args()
  31. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id)
  32. if __name__ == "__main__":
  33. # define net
  34. embedding_table = np.loadtxt(os.path.join(config.preprocess_path, "weight.txt")).astype(np.float32)
  35. net = textrcnn(weight=Tensor(embedding_table), vocab_size=embedding_table.shape[0],
  36. cell=config.cell, batch_size=config.batch_size)
  37. # load checkpoint
  38. param_dict = load_checkpoint(args.ckpt_file)
  39. load_param_into_net(net, param_dict)
  40. net.set_train(False)
  41. image = Tensor(np.ones([config.batch_size, 50], np.int32))
  42. export(net, image, file_name=args.file_name, file_format=args.file_format)