- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ==============================================================================
- import copy
- import mindspore.dataset.text as text
- import mindspore.dataset as ds
- from mindspore.dataset.text import SentencePieceModel, to_str, SPieceTokenizerOutType
-
- VOCAB_FILE = "../data/dataset/test_sentencepiece/botchan.txt"
- DATA_FILE = "../data/dataset/testTokenizerData/sentencepiece_tokenizer.txt"
-
-
- def test_from_vocab_to_str_UNIGRAM():
- vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
- tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
- dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
- dataset = dataset.map(operations=tokenizer)
- expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
- for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
- ret = to_str(i["text"])
- for key, value in enumerate(ret):
- assert value == expect[key]
-
-
- def test_from_vocab_to_str_BPE():
- vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.BPE, {})
- tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
- dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
- dataset = dataset.map(operations=tokenizer)
- expect = ['▁I', '▁saw', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'c', 'ope', '.']
- for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
- ret = to_str(i["text"])
- for key, value in enumerate(ret):
- assert value == expect[key]
-
-
- def test_from_vocab_to_str_CHAR():
- vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.CHAR, {})
- tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
- dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
- dataset = dataset.map(operations=tokenizer)
- expect = ['▁', 'I', '▁', 's', 'a', 'w', '▁', 'a', '▁', 'g', 'i', 'r', 'l', '▁', 'w', 'i', 't', 'h',\
- '▁', 'a', '▁', 't', 'e', 'l', 'e', 's', 'c', 'o', 'p', 'e', '.']
- for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
- ret = to_str(i["text"])
- for key, value in enumerate(ret):
- assert value == expect[key]
-
-
- def test_from_vocab_to_str_WORD():
- vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.WORD, {})
- tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
- dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
- dataset = dataset.map(operations=tokenizer)
- expect = ['▁I', '▁saw', '▁a', '▁girl', '▁with', '▁a', '▁telescope.']
- for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
- ret = to_str(i["text"])
- for key, value in enumerate(ret):
- assert value == expect[key]
-
-
- def test_from_vocab_to_int():
- vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
- tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.INT)
- dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
- dataset = dataset.map(operations=tokenizer)
- expect = [6, 329, 183, 8, 945, 23, 8, 3783, 4382, 4641, 1405, 4]
- for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
- ret = i["text"]
- for key, value in enumerate(ret):
- assert value == expect[key]
-
-
- def test_from_file_to_str():
- vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
- text.SentencePieceVocab.save_model(vocab, "./", "m.model")
- tokenizer = text.SentencePieceTokenizer("./m.model", out_type=SPieceTokenizerOutType.STRING)
- dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
- dataset = dataset.map(operations=tokenizer)
- expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
- for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
- ret = to_str(i["text"])
- for key, value in enumerate(ret):
- assert value == expect[key]
-
-
- def test_from_file_to_int():
- vocab = text.SentencePieceVocab.from_file([VOCAB_FILE], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
- text.SentencePieceVocab.save_model(vocab, "./", "m.model")
- tokenizer = text.SentencePieceTokenizer("./m.model", out_type=SPieceTokenizerOutType.INT)
- dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
- dataset = dataset.map(operations=tokenizer)
- expect = [6, 329, 183, 8, 945, 23, 8, 3783, 4382, 4641, 1405, 4]
- for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
- ret = i["text"]
- for key, value in enumerate(ret):
- assert value == expect[key]
-
-
- def test_build_from_dataset():
- data = ds.TextFileDataset(VOCAB_FILE, shuffle=False)
- vocab = text.SentencePieceVocab.from_dataset(data, ["text"], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
- tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
- dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
- dataset = dataset.map(operations=tokenizer)
- expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
- for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
- ret = to_str(i["text"])
- for key, value in enumerate(ret):
- assert value == expect[key]
-
-
- def apply_func(dataset):
- input_columns = ['text']
- output_columns = ['text2']
- dataset = dataset.rename(input_columns, output_columns)
- return dataset
-
-
- def zip_test(dataset):
- dataset_1 = copy.deepcopy(dataset)
- dataset_2 = copy.deepcopy(dataset)
- dataset_1 = dataset_1.apply(apply_func)
- dataset_zip = ds.zip((dataset_1, dataset_2))
- expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
- for i in dataset_zip.create_dict_iterator(num_epochs=1, output_numpy=True):
- ret = to_str(i["text"])
- for key, value in enumerate(ret):
- assert value == expect[key]
-
-
- def concat_test(dataset):
- dataset_1 = copy.deepcopy(dataset)
- dataset = dataset.concat(dataset_1)
- expect = ['▁I', '▁sa', 'w', '▁a', '▁girl', '▁with', '▁a', '▁te', 'les', 'co', 'pe', '.']
- for i in dataset.create_dict_iterator(num_epochs=1, output_numpy=True):
- ret = to_str(i["text"])
- for key, value in enumerate(ret):
- assert value == expect[key]
-
- def test_with_zip_concat():
- data = ds.TextFileDataset(VOCAB_FILE, shuffle=False)
- vocab = text.SentencePieceVocab.from_dataset(data, ["text"], 5000, 0.9995, SentencePieceModel.UNIGRAM, {})
- tokenizer = text.SentencePieceTokenizer(vocab, out_type=SPieceTokenizerOutType.STRING)
- dataset = ds.TextFileDataset(DATA_FILE, shuffle=False)
- dataset = dataset.map(operations=tokenizer, num_parallel_workers=2)
- zip_test(dataset)
- concat_test(dataset)
-
-
- if __name__ == "__main__":
- test_from_vocab_to_str_UNIGRAM()
- test_from_vocab_to_str_BPE()
- test_from_vocab_to_str_CHAR()
- test_from_vocab_to_str_WORD()
- test_from_vocab_to_int()
- test_from_file_to_str()
- test_from_file_to_int()
- test_build_from_dataset()
- test_with_zip_concat()
|