|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- import numpy as np
- import pytest
- import mindspore.nn as nn
- from mindspore import Tensor, Parameter, context
- from mindspore.nn import TrainOneStepCell
- from mindspore.nn.optim import FTRL, LazyAdam
- from mindspore.ops import operations as P
-
- context.set_context(enable_sparse=True,
- mode=context.GRAPH_MODE,
- device_target="Ascend")
-
- class NetWithSparseGatherV2(nn.Cell):
- def __init__(self):
- super(NetWithSparseGatherV2, self).__init__()
- self.weight1 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight1")
- self.weight2 = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="weight2")
- self.axis = 0
- self.gather = P.SparseGatherV2()
-
- def construct(self, indices, label):
- return self.gather(self.weight1, indices, self.axis) + self.weight2
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_ftrl_net():
- indices = Tensor(np.array([0, 0, 1]).astype(np.int32))
- label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
- net = NetWithSparseGatherV2()
-
- optimizer = FTRL(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0)
- optimizer.target = 'Ascend'
- train_network = TrainOneStepCell(net, optimizer)
- output = train_network(indices, label)
- np.allclose(output.asnumpy(), np.array([[[2, 2]], [[2, 2]], [[2, 2]]]))
- np.allclose(net.weight1.asnumpy(), np.array([[[0.7884067, 0.7884067]],
- [[0.68213105, 0.68213105]],
- [[1.0, 1.0]]]))
- np.allclose(net.weight2.asnumpy(), np.array([[[0.6821311, 0.6821311]],
- [[0.6821311, 0.6821311]],
- [[0.6821311, 0.6821311]]]))
-
- @pytest.mark.level0
- @pytest.mark.platform_arm_ascend_training
- @pytest.mark.platform_x86_ascend_training
- @pytest.mark.env_onecard
- def test_lazy_adam_net():
- indices = Tensor(np.array([0, 0, 1]).astype(np.int32))
- label = Tensor(np.zeros([2, 1, 2]).astype(np.float32))
- net = NetWithSparseGatherV2()
-
- optimizer = LazyAdam(net.trainable_params(), learning_rate=0.1, weight_decay=0.9, loss_scale=2.0)
- optimizer.target = 'Ascend'
- train_network = TrainOneStepCell(net, optimizer)
- output = train_network(indices, label)
- np.allclose(output.asnumpy(), np.array([[[2, 2]], [[2, 2]], [[2, 2]]]))
- np.allclose(net.weight1.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[1.0, 1.0]]]))
- np.allclose(net.weight2.asnumpy(), np.array([[[0.9, 0.9]], [[0.9, 0.9]], [[0.9, 0.9]]]))
|