You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_relu6_op.py 2.5 kB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.ops import operations as P
  21. from mindspore.ops.operations import _grad_ops as G
  22. context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
  23. class NetReLU6(nn.Cell):
  24. def __init__(self):
  25. super(NetReLU6, self).__init__()
  26. self.relu6 = P.ReLU6()
  27. def construct(self, x):
  28. return self.relu6(x)
  29. class NetReLU6Grad(nn.Cell):
  30. def __init__(self):
  31. super(NetReLU6Grad, self).__init__()
  32. self.relu6_grad = G.ReLU6Grad()
  33. def construct(self, x, dy):
  34. return self.relu6_grad(dy, x)
  35. @pytest.mark.level0
  36. @pytest.mark.platform_x86_cpu
  37. @pytest.mark.env_onecard
  38. def test_relu6():
  39. x = Tensor(np.array([[[[-1, 1, 10],
  40. [5.9, 6.1, 6],
  41. [10, 1, -1]]]]).astype(np.float32))
  42. expect = np.array([[[[0, 1, 6,],
  43. [5.9, 6, 6,],
  44. [6, 1, 0.]]]]).astype(np.float32)
  45. relu6 = NetReLU6()
  46. output = relu6(x)
  47. assert (output.asnumpy() == expect).all()
  48. @pytest.mark.level0
  49. @pytest.mark.platform_x86_cpu
  50. @pytest.mark.env_onecard
  51. def test_relu6_grad():
  52. x = Tensor(np.array([[[[-1, 1, 10],
  53. [5.9, 6.1, 6],
  54. [10, 1, -1]]]]).astype(np.float32))
  55. dy = Tensor(np.array([[[[1, 1, 1],
  56. [1, 1, 1],
  57. [1, 1, 1]]]]).astype(np.float32))
  58. expect = np.array([[[[0, 1, 0,],
  59. [1, 0, 1,],
  60. [0, 1, 0,]]]]).astype(np.float32)
  61. error = np.ones(shape=[3, 3]) * 1.0e-6
  62. relu6_grad = NetReLU6Grad()
  63. output = relu6_grad(x, dy)
  64. diff = np.abs(output.asnumpy() - expect)
  65. assert np.all(np.abs(diff) < error)