You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_hsigmoid_op.py 2.0 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. import numpy as np
  16. import pytest
  17. import mindspore.context as context
  18. import mindspore.nn as nn
  19. from mindspore import Tensor
  20. from mindspore.common.api import ms_function
  21. from mindspore.ops import operations as P
  22. from mindspore.ops.composite import GradOperation
  23. context.set_context(mode=context.GRAPH_MODE, device_target="CPU")
  24. class Grad(nn.Cell):
  25. def __init__(self, network):
  26. super(Grad, self).__init__()
  27. self.grad = GradOperation(get_all=True, sens_param=True)
  28. self.network = network
  29. @ms_function
  30. def construct(self, input_, output_grad):
  31. return self.grad(self.network)(input_, output_grad)
  32. class Net(nn.Cell):
  33. def __init__(self):
  34. super(Net, self).__init__()
  35. self.HSigmoid = P.HSigmoid()
  36. def construct(self, x):
  37. return self.HSigmoid(x)
  38. @pytest.mark.level0
  39. @pytest.mark.platform_x86_cpu
  40. @pytest.mark.env_onecard
  41. def test_net():
  42. x = np.array([-1, -2, 0, 2, 1]).astype(np.float32)
  43. hswish = Net()
  44. y = hswish(Tensor(x))
  45. expect = np.array([0.33333334, 0.16666667, 0.5, 0.8333333, 0.6666667]).astype(np.float32)
  46. assert np.all(y.asnumpy() == expect)
  47. sens = np.random.randn(5).astype(np.float32)
  48. backword_net = Grad(Net())
  49. output = backword_net(Tensor(x), Tensor(sens))
  50. print(len(output))
  51. print(output[0].asnumpy())