You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 12 kB

5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240
  1. # Contents
  2. - [YOLOv3_ResNet18 Description](#yolov3_resnet18-description)
  3. - [Model Architecture](#model-architecture)
  4. - [Dataset](#dataset)
  5. - [Environment Requirements](#environment-requirements)
  6. - [Quick Start](#quick-start)
  7. - [Script Description](#script-description)
  8. - [Script and Sample Code](#script-and-sample-code)
  9. - [Script Parameters](#script-parameters)
  10. - [Training Process](#training-process)
  11. - [Training](#training)
  12. - [Evaluation Process](#evaluation-process)
  13. - [Evaluation](#evaluation)
  14. - [Model Description](#model-description)
  15. - [Performance](#performance)
  16. - [Evaluation Performance](#evaluation-performance)
  17. - [Inference Performance](#evaluation-performance)
  18. - [Description of Random Situation](#description-of-random-situation)
  19. - [ModelZoo Homepage](#modelzoo-homepage)
  20. # [YOLOv3_ResNet18 Description](#contents)
  21. YOLOv3 network based on ResNet-18, with support for training and evaluation.
  22. [Paper](https://arxiv.org/abs/1804.02767): Joseph Redmon, Ali Farhadi. arXiv preprint arXiv:1804.02767, 2018. 2, 4, 7, 11.
  23. # [Model Architecture](#contents)
  24. The overall network architecture of YOLOv3 is show below:
  25. And we use ResNet18 as the backbone of YOLOv3_ResNet18. The architecture of ResNet18 has 4 stages. The ResNet architecture performs the initial convolution and max-pooling using 7×7 and 3×3 kernel sizes respectively. Afterward, every stage of the network has different Residual blocks (2, 2, 2, 2) containing two 3×3 conv layers. Finally, the network has an Average Pooling layer followed by a fully connected layer.
  26. # [Dataset](#contents)
  27. Dataset used: [COCO2017](<http://images.cocodataset.org/>)
  28. - Dataset size:19G
  29. - Train:18G,118000 images
  30. - Val:1G,5000 images
  31. - Annotations:241M,instances,captions,person_keypoints etc
  32. - Data format:image and json files
  33. - Note:Data will be processed in dataset.py
  34. - Dataset
  35. 1. The directory structure is as follows:
  36. ```
  37. .
  38. ├── annotations # annotation jsons
  39. ├── train2017 # train dataset
  40. └── val2017 # infer dataset
  41. ```
  42. 2. Organize the dataset infomation into a TXT file, each row in the file is as follows:
  43. ```
  44. train2017/0000001.jpg 0,259,401,459,7 35,28,324,201,2 0,30,59,80,2
  45. ```
  46. Each row is an image annotation which split by space, the first column is a relative path of image, the others are box and class infomations of the format [xmin,ymin,xmax,ymax,class]. `dataset.py` is the parsing script, we read image from an image path joined by the `image_dir`(dataset directory) and the relative path in `anno_path`(the TXT file path), `image_dir` and `anno_path` are external inputs.
  47. # [Environment Requirements](#contents)
  48. - Hardware(Ascend)
  49. - Prepare hardware environment with Ascend processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
  50. - Framework
  51. - [MindSpore](https://www.mindspore.cn/install/en)
  52. - For more information, please check the resources below:
  53. - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
  54. - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
  55. # [Quick Start](#contents)
  56. After installing MindSpore via the official website, you can start training and evaluation on Ascend as follows:
  57. - runing on Ascend
  58. ```shell script
  59. #run standalone training example
  60. sh run_standalone_train.sh [DEVICE_ID] [EPOCH_SIZE] [MINDRECORD_DIR] [IMAGE_DIR] [ANNO_PATH]
  61. #run distributed training example
  62. sh run_distribute_train.sh [DEVICE_NUM] [EPOCH_SIZE] [MINDRECORD_DIR] [IMAGE_DIR] [ANNO_PATH] [RANK_TABLE_FILE]
  63. #run evaluation example
  64. sh run_eval.sh [DEVICE_ID] [CKPT_PATH] [MINDRECORD_DIR] [IMAGE_DIR] [ANNO_PATH]
  65. ```
  66. # [Script Description](#contents)
  67. ## [Script and Sample Code](#contents)
  68. ```
  69. └── cv
  70. ├── README.md // descriptions about all the models
  71. ├── mindspore_hub_conf.md // config for mindspore hub
  72. └── yolov3_resnet18
  73. ├── README.md // descriptions about yolov3_resnet18
  74. ├── scripts
  75. ├── run_distribute_train.sh // shell script for distributed on Ascend
  76. ├── run_standalone_train.sh // shell script for distributed on Ascend
  77. └── run_eval.sh // shell script for evaluation on Ascend
  78. ├── src
  79. ├── dataset.py // creating dataset
  80. ├── yolov3.py // yolov3 architecture
  81. ├── config.py // parameter configuration
  82. └── utils.py // util function
  83. ├── train.py // training script
  84. └── eval.py // evaluation script
  85. ```
  86. ## [Script Parameters](#contents)
  87. ```
  88. Major parameters in train.py and config.py as follows:
  89. device_num: Use device nums, default is 1.
  90. lr: Learning rate, default is 0.001.
  91. epoch_size: Epoch size, default is 50.
  92. batch_size: Batch size, default is 32.
  93. pre_trained: Pretrained Checkpoint file path.
  94. pre_trained_epoch_size: Pretrained epoch size.
  95. mindrecord_dir: Mindrecord directory.
  96. image_dir: Dataset path.
  97. anno_path: Annotation path.
  98. img_shape: Image height and width used as input to the model.
  99. ```
  100. ## [Training Process](#contents)
  101. ### Training on Ascend
  102. To train the model, run `train.py` with the dataset `image_dir`, `anno_path` and `mindrecord_dir`. If the `mindrecord_dir` is empty, it wil generate [mindrecord](https://www.mindspore.cn/tutorial/training/zh-CN/master/advanced_use/convert_dataset.html) file by `image_dir` and `anno_path`(the absolute image path is joined by the `image_dir` and the relative path in `anno_path`). **Note if `mindrecord_dir` isn't empty, it will use `mindrecord_dir` rather than `image_dir` and `anno_path`.**
  103. - Stand alone mode
  104. ```
  105. sh run_standalone_train.sh 0 50 ./Mindrecord_train ./dataset ./dataset/train.txt
  106. ```
  107. The input variables are device id, epoch size, mindrecord directory path, dataset directory path and train TXT file path.
  108. - Distributed mode
  109. ```
  110. sh run_distribute_train.sh 8 150 /data/Mindrecord_train /data /data/train.txt /data/hccl.json
  111. ```
  112. The input variables are device numbers, epoch size, mindrecord directory path, dataset directory path, train TXT file path and [hccl json configuration file](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/utils/hccl_tools). **It is better to use absolute path.**
  113. You will get the loss value and time of each step as following:
  114. ```
  115. epoch: 145 step: 156, loss is 12.202981
  116. epoch time: 25599.22742843628, per step time: 164.0976117207454
  117. epoch: 146 step: 156, loss is 16.91706
  118. epoch time: 23199.971675872803, per step time: 148.7177671530308
  119. epoch: 147 step: 156, loss is 13.04007
  120. epoch time: 23801.95164680481, per step time: 152.57661312054364
  121. epoch: 148 step: 156, loss is 10.431475
  122. epoch time: 23634.241580963135, per step time: 151.50154859591754
  123. epoch: 149 step: 156, loss is 14.665991
  124. epoch time: 24118.8325881958, per step time: 154.60790120638333
  125. epoch: 150 step: 156, loss is 10.779521
  126. epoch time: 25319.57221031189, per step time: 162.30495006610187
  127. ```
  128. Note the results is two-classification(person and face) used our own annotations with coco2017, you can change `num_classes` in `config.py` to train your dataset. And we will suport 80 classifications in coco2017 the near future.
  129. ## [Evaluation Process](#contents)
  130. ### Evaluation on Ascend
  131. To eval, run `eval.py` with the dataset `image_dir`, `anno_path`(eval txt), `mindrecord_dir` and `ckpt_path`. `ckpt_path` is the path of [checkpoint](https://www.mindspore.cn/tutorial/training/en/master/use/save_model.html) file.
  132. ```
  133. sh run_eval.sh 0 yolo.ckpt ./Mindrecord_eval ./dataset ./dataset/eval.txt
  134. ```
  135. The input variables are device id, checkpoint path, mindrecord directory path, dataset directory path and train TXT file path.
  136. You will get the precision and recall value of each class:
  137. ```
  138. class 0 precision is 88.18%, recall is 66.00%
  139. class 1 precision is 85.34%, recall is 79.13%
  140. ```
  141. Note the precision and recall values are results of two-classification(person and face) used our own annotations with coco2017.
  142. # [Model Description](#contents)
  143. ## [Performance](#contents)
  144. ### Evaluation Performance
  145. | Parameters | Ascend |
  146. | -------------------------- | ----------------------------------------------------------- |
  147. | Model Version | YOLOv3_Resnet18 V1 |
  148. | Resource | Ascend 910 ;CPU 2.60GHz,192cores;Memory,755G |
  149. | uploaded Date | 06/01/2020 (month/day/year) |
  150. | MindSpore Version | 0.2.0-alpha |
  151. | Dataset | COCO2017 |
  152. | Training Parameters | epoch = 150, batch_size = 32, lr = 0.001 |
  153. | Optimizer | Adam |
  154. | Loss Function | Sigmoid Cross Entropy |
  155. | outputs | probability |
  156. | Speed | 1pc: 120 ms/step; 8pcs: 160 ms/step |
  157. | Total time | 1pc: 150 mins; 8pcs: 70 mins |
  158. | Parameters (M) | 189 |
  159. | Scripts | [yolov3_resnet18 script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_resnet18) | [yolov3_resnet18 script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/yolov3_resnet18) |
  160. ### Inference Performance
  161. | Parameters | Ascend |
  162. | ------------------- | ----------------------------------------------- |
  163. | Model Version | YOLOv3_Resnet18 V1 |
  164. | Resource | Ascend 910 |
  165. | Uploaded Date | 06/01/2020 (month/day/year) |
  166. | MindSpore Version | 0.2.0-alpha |
  167. | Dataset | COCO2017 |
  168. | batch_size | 1 |
  169. | outputs | presion and recall |
  170. | Accuracy | class 0: 88.18%/66.00%; class 1: 85.34%/79.13% |
  171. # [Description of Random Situation](#contents)
  172. In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
  173. # [ModelZoo Homepage](#contents)
  174. Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).