You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.0 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """export checkpoint file into air models"""
  16. import argparse
  17. import numpy as np
  18. from mindspore import Tensor, context
  19. from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
  20. from src.maskrcnn.mask_rcnn_r50 import Mask_Rcnn_Resnet50
  21. from src.config import config
  22. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend")
  23. if __name__ == '__main__':
  24. parser = argparse.ArgumentParser(description='maskrcnn_export')
  25. parser.add_argument('--ckpt_file', type=str, default='', help='maskrcnn ckpt file.')
  26. parser.add_argument('--output_file', type=str, default='', help='maskrcnn output air name.')
  27. args_opt = parser.parse_args()
  28. net = Mask_Rcnn_Resnet50(config=config)
  29. param_dict = load_checkpoint(args_opt.ckpt_file)
  30. load_param_into_net(net, param_dict)
  31. net.set_train(False)
  32. bs = config.test_batch_size
  33. img = Tensor(np.zeros([bs, 3, 768, 1280], np.float16))
  34. img_metas = Tensor(np.zeros([bs, 4], np.float16))
  35. gt_bboxes = Tensor(np.zeros([bs, 128, 4], np.float16))
  36. gt_labels = Tensor(np.zeros([bs, 128], np.int32))
  37. gt_num = Tensor(np.zeros([bs, 128], np.bool))
  38. gt_mask = Tensor(np.zeros([bs, 128], np.bool))
  39. export(net, img, img_metas, gt_bboxes, gt_labels, gt_num, gt_mask, file_name=args_opt.output_file,
  40. file_format="AIR")