|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237 |
- # Contents
-
- - [InceptionV3 Description](#InceptionV3-description)
- - [Model Architecture](#model-architecture)
- - [Dataset](#dataset)
- - [Features](#features)
- - [Mixed Precision](#mixed-precision)
- - [Environment Requirements](#environment-requirements)
- - [Script Description](#script-description)
- - [Script and Sample Code](#script-and-sample-code)
- - [Training Process](#training-process)
- - [Evaluation Process](#evaluation-process)
- - [Evaluation](#evaluation)
- - [Model Description](#model-description)
- - [Performance](#performance)
- - [Training Performance](#evaluation-performance)
- - [Inference Performance](#evaluation-performance)
- - [Description of Random Situation](#description-of-random-situation)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
- # [InceptionV3 Description](#contents)
-
- InceptionV3 by Google is the 3rd version in a series of Deep Learning Convolutional Architectures.
-
- [Paper](https://arxiv.org/pdf/1512.00567.pdf) Min Sun, Ali Farhadi, Steve Seitz. Ranking Domain-Specific Highlights by Analyzing Edited Videos[J]. 2014.
-
- # [Model architecture](#contents)
-
- The overall network architecture of InceptionV3 is show below:
-
- [Link](https://arxiv.org/pdf/1905.02244)
-
-
- # [Dataset](#contents)
-
- Dataset used can refer to paper.
-
- - Dataset size: ~125G, 1.2W colorful images in 1000 classes
- - Train: 120G, 1.2W images
- - Test: 5G, 50000 images
- - Data format: RGB images.
- - Note: Data will be processed in src/dataset.py
-
- # [Features](#contents)
-
- ## [Mixed Precision(Ascend)](#contents)
-
- The [mixed precision](https://www.mindspore.cn/tutorial/zh-CN/master/advanced_use/mixed_precision.html) training method accelerates the deep learning neural network training process by using both the single-precision and half-precision data formats, and maintains the network precision achieved by the single-precision training at the same time. Mixed precision training can accelerate the computation process, reduce memory usage, and enable a larger model or batch size to be trained on specific hardware.
- For FP16 operators, if the input data type is FP32, the backend of MindSpore will automatically handle it with reduced precision. Users could check the reduced-precision operators by enabling INFO log and then searching ‘reduce precision’.
-
- # [Environment Requirements](#contents)
-
- - Hardware(Ascend/GPU)
- - Prepare hardware environment with Ascend or GPU processor. If you want to try Ascend , please send the [application form](https://obs-9be7.obs.cn-east-2.myhuaweicloud.com/file/other/Ascend%20Model%20Zoo%E4%BD%93%E9%AA%8C%E8%B5%84%E6%BA%90%E7%94%B3%E8%AF%B7%E8%A1%A8.docx) to ascend@huawei.com. Once approved, you can get the resources.
- - Framework
- - [MindSpore](http://10.90.67.50/mindspore/archive/20200506/OpenSource/me_vm_x86/)
- - For more information, please check the resources below:
- - [MindSpore tutorials](https://www.mindspore.cn/tutorial/zh-CN/master/index.html)
- - [MindSpore API](https://www.mindspore.cn/api/zh-CN/master/index.html)
-
- # [Script description](#contents)
-
- ## [Script and sample code](#contents)
-
- ```shell
- .
- └─Inception-v3
- ├─README.md
- ├─scripts
- ├─run_standalone_train.sh # launch standalone training with ascend platform(1p)
- ├─run_standalone_train_for_gpu.sh # launch standalone training with gpu platform(1p)
- ├─run_distribute_train.sh # launch distributed training with ascend platform(8p)
- ├─run_distribute_train_for_gpu.sh # launch distributed training with gpu platform(8p)
- ├─run_eval.sh # launch evaluating with ascend platform
- └─run_eval_for_gpu.sh # launch evaluating with gpu platform
- ├─src
- ├─config.py # parameter configuration
- ├─dataset.py # data preprocessing
- ├─inception_v3.py # network definition
- ├─loss.py # Customized CrossEntropy loss function
- ├─lr_generator.py # learning rate generator
- ├─eval.py # eval net
- ├─export.py # convert checkpoint
- └─train.py # train net
-
- ```
- ## [Script Parameters](#contents)
-
- ```python
- Major parameters in train.py and config.py are:
- 'random_seed': 1, # fix random seed
- 'rank': 0, # local rank of distributed
- 'group_size': 1, # world size of distributed
- 'work_nums': 8, # number of workers to read the data
- 'decay_method': 'cosine', # learning rate scheduler mode
- "loss_scale": 1, # loss scale
- 'batch_size': 128, # input batchsize
- 'epoch_size': 250, # total epoch numbers
- 'num_classes': 1000, # dataset class numbers
- 'smooth_factor': 0.1, # label smoothing factor
- 'aux_factor': 0.2, # loss factor of aux logit
- 'lr_init': 0.00004, # initiate learning rate
- 'lr_max': 0.4, # max bound of learning rate
- 'lr_end': 0.000004, # min bound of learning rate
- 'warmup_epochs': 1, # warmup epoch numbers
- 'weight_decay': 0.00004, # weight decay
- 'momentum': 0.9, # momentum
- 'opt_eps': 1.0, # epsilon
- 'keep_checkpoint_max': 100, # max numbers to keep checkpoints
- 'ckpt_path': './checkpoint/', # save checkpoint path
- 'is_save_on_master': 1 # save checkpoint on rank0, distributed parameters
- ```
-
- ## [Training process](#contents)
-
- ### Usage
-
-
- You can start training using python or shell scripts. The usage of shell scripts as follows:
-
- - Ascend:
- ```
- # distribute training example(8p)
- sh run_distribute_train.sh RANK_TABLE_FILE DATA_PATH
- # standalone training
- sh run_standalone_train.sh DEVICE_ID DATA_PATH
- ```
-
- - GPU:
- ```
- # distribute training example(8p)
- sh run_distribute_train_for_gpu.sh DATA_DIR
- # standalone training
- sh run_standalone_train_for_gpu.sh DEVICE_ID DATA_DIR
- ```
-
- ### Launch
-
- ```
- # training example
- python:
- Ascend: python train.py --dataset_path /dataset/train --platform Ascend
- GPU: python train.py --dataset_path /dataset/train --platform GPU
-
- shell:
- # distributed training example(8p) for GPU
- sh scripts/run_distribute_train_for_gpu.sh /dataset/train
- # standalone training example for GPU
- sh scripts/run_standalone_train_for_gpu.sh 0 /dataset/train
- ```
-
- ### Result
-
- Training result will be stored in the example path. Checkpoints will be stored at `. /checkpoint` by default, and training log will be redirected to `./log.txt` like followings.
-
- ```
- epoch: 0 step: 1251, loss is 5.7787247
- Epoch time: 360760.985, per step time: 288.378
- epoch: 1 step: 1251, loss is 4.392868
- Epoch time: 160917.911, per step time: 128.631
- ```
- ## [Eval process](#contents)
-
- ### Usage
-
- You can start training using python or shell scripts. The usage of shell scripts as follows:
-
- - Ascend: sh run_eval.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
- - GPU: sh run_eval_for_gpu.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
-
- ### Launch
-
- ```
- # eval example
- python:
- Ascend: python eval.py --dataset_path DATA_DIR --checkpoint PATH_CHECKPOINT --platform Ascend
- GPU: python eval.py --dataset_path DATA_DIR --checkpoint PATH_CHECKPOINT --platform GPU
-
- shell:
- Ascend: sh run_eval.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
- GPU: sh run_eval_for_gpu.sh DEVICE_ID DATA_DIR PATH_CHECKPOINT
- ```
-
- > checkpoint can be produced in training process.
-
- ### Result
-
- Evaluation result will be stored in the example path, you can find result like the followings in `log.txt`.
-
- ```
- metric: {'Loss': 1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942}
- ```
-
- # [Model description](#contents)
-
- ## [Performance](#contents)
-
- ### Training Performance
-
- | Parameters | InceptionV3 | |
- | -------------------------- | ---------------------------------------------------------- | ------------------------- |
- | Model Version | | |
- | Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G | NV SMX2 V100-32G |
- | uploaded Date | 08/21/2020 | 08/21/2020 |
- | MindSpore Version | 0.6.0-beta | 0.6.0-beta |
- | Training Parameters | src/config.py | src/config.py |
- | Optimizer | RMSProp | RMSProp |
- | Loss Function | SoftmaxCrossEntropy | SoftmaxCrossEntropy |
- | outputs | probability | probability |
- | Loss | 1.98 | 1.98 |
- | Accuracy | ACC1[78.8%] ACC5[94.2%] | ACC1[78.7%] ACC5[94.1%] |
- | Total time | 11h | 72h |
- | Params (M) | 103M | 103M |
- | Checkpoint for Fine tuning | 313M | 312.41M |
-
- #### Inference Performance
-
- | Parameters | InceptionV3 |
- | ------------------- | --------------------------- |
- | Model Version | |
- | Resource | Ascend 910 |
- | Uploaded Date | 08/22/2020 (month/day/year) |
- | MindSpore Version | 0.6.0-beta |
- | Dataset | 50,000 images |
- | batch_size | 128 |
- | outputs | probability |
- | Accuracy | ACC1[78.8%] ACC5[94.2%] |
- | Total time | 2mins |
- | Model for inference | 92M (.onnx file) |
-
- # [Description of Random Situation](#contents)
-
- In dataset.py, we set the seed inside “create_dataset" function. We also use random seed in train.py.
-
- # [ModelZoo Homepage](#contents)
-
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|