You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_config.py 16 kB

5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400
  1. # Copyright 2019 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing configuration manager
  17. """
  18. import os
  19. import filecmp
  20. import glob
  21. import numpy as np
  22. import mindspore.dataset as ds
  23. import mindspore.dataset.transforms.py_transforms
  24. import mindspore.dataset.vision.c_transforms as c_vision
  25. import mindspore.dataset.vision.py_transforms as py_vision
  26. from mindspore import log as logger
  27. from util import dataset_equal
  28. DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"]
  29. SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json"
  30. def test_basic():
  31. """
  32. Test basic configuration functions
  33. """
  34. # Save original configuration values
  35. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  36. prefetch_size_original = ds.config.get_prefetch_size()
  37. seed_original = ds.config.get_seed()
  38. monitor_sampling_interval_original = ds.config.get_monitor_sampling_interval()
  39. ds.config.load('../data/dataset/declient.cfg')
  40. # assert ds.config.get_rows_per_buffer() == 32
  41. assert ds.config.get_num_parallel_workers() == 4
  42. # assert ds.config.get_worker_connector_size() == 16
  43. assert ds.config.get_prefetch_size() == 16
  44. assert ds.config.get_seed() == 5489
  45. assert ds.config.get_monitor_sampling_interval() == 15
  46. # ds.config.set_rows_per_buffer(1)
  47. ds.config.set_num_parallel_workers(2)
  48. # ds.config.set_worker_connector_size(3)
  49. ds.config.set_prefetch_size(4)
  50. ds.config.set_seed(5)
  51. ds.config.set_monitor_sampling_interval(45)
  52. # assert ds.config.get_rows_per_buffer() == 1
  53. assert ds.config.get_num_parallel_workers() == 2
  54. # assert ds.config.get_worker_connector_size() == 3
  55. assert ds.config.get_prefetch_size() == 4
  56. assert ds.config.get_seed() == 5
  57. assert ds.config.get_monitor_sampling_interval() == 45
  58. # Restore original configuration values
  59. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  60. ds.config.set_prefetch_size(prefetch_size_original)
  61. ds.config.set_seed(seed_original)
  62. ds.config.set_monitor_sampling_interval(monitor_sampling_interval_original)
  63. def test_get_seed():
  64. """
  65. This gets the seed value without explicitly setting a default, expect int.
  66. """
  67. assert isinstance(ds.config.get_seed(), int)
  68. def test_pipeline():
  69. """
  70. Test that our configuration pipeline works when we set parameters at different locations in dataset code
  71. """
  72. # Save original configuration values
  73. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  74. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, shuffle=False)
  75. data1 = data1.map(operations=[c_vision.Decode(True)], input_columns=["image"])
  76. ds.serialize(data1, "testpipeline.json")
  77. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, num_parallel_workers=num_parallel_workers_original,
  78. shuffle=False)
  79. data2 = data2.map(operations=[c_vision.Decode(True)], input_columns=["image"])
  80. ds.serialize(data2, "testpipeline2.json")
  81. # check that the generated output is different
  82. assert filecmp.cmp('testpipeline.json', 'testpipeline2.json')
  83. # this test passes currently because our num_parallel_workers don't get updated.
  84. # remove generated jason files
  85. file_list = glob.glob('*.json')
  86. for f in file_list:
  87. try:
  88. os.remove(f)
  89. except IOError:
  90. logger.info("Error while deleting: {}".format(f))
  91. # Restore original configuration values
  92. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  93. def test_deterministic_run_fail():
  94. """
  95. Test RandomCrop with seed, expected to fail
  96. """
  97. logger.info("test_deterministic_run_fail")
  98. # Save original configuration values
  99. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  100. seed_original = ds.config.get_seed()
  101. # when we set the seed all operations within our dataset should be deterministic
  102. ds.config.set_seed(0)
  103. ds.config.set_num_parallel_workers(1)
  104. # First dataset
  105. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  106. # Assuming we get the same seed on calling constructor, if this op is re-used then result won't be
  107. # the same in between the two datasets. For example, RandomCrop constructor takes seed (0)
  108. # outputs a deterministic series of numbers, e,g "a" = [1, 2, 3, 4, 5, 6] <- pretend these are random
  109. random_crop_op = c_vision.RandomCrop([512, 512], [200, 200, 200, 200])
  110. decode_op = c_vision.Decode()
  111. data1 = data1.map(operations=decode_op, input_columns=["image"])
  112. data1 = data1.map(operations=random_crop_op, input_columns=["image"])
  113. # Second dataset
  114. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  115. data2 = data2.map(operations=decode_op, input_columns=["image"])
  116. # If seed is set up on constructor
  117. data2 = data2.map(operations=random_crop_op, input_columns=["image"])
  118. try:
  119. dataset_equal(data1, data2, 0)
  120. except Exception as e:
  121. # two datasets split the number out of the sequence a
  122. logger.info("Got an exception in DE: {}".format(str(e)))
  123. assert "Array" in str(e)
  124. # Restore original configuration values
  125. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  126. ds.config.set_seed(seed_original)
  127. def test_seed_undeterministic():
  128. """
  129. Test seed with num parallel workers in c, this test is expected to fail some of the time
  130. """
  131. logger.info("test_seed_undeterministic")
  132. # Save original configuration values
  133. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  134. seed_original = ds.config.get_seed()
  135. ds.config.set_seed(0)
  136. ds.config.set_num_parallel_workers(3)
  137. # First dataset
  138. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  139. # We get the seed when constructor is called
  140. random_crop_op = c_vision.RandomCrop([512, 512], [200, 200, 200, 200])
  141. decode_op = c_vision.Decode()
  142. data1 = data1.map(operations=decode_op, input_columns=["image"])
  143. data1 = data1.map(operations=random_crop_op, input_columns=["image"])
  144. # Second dataset
  145. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  146. data2 = data2.map(operations=decode_op, input_columns=["image"])
  147. # Since seed is set up on constructor, so the two ops output deterministic sequence.
  148. # Assume the generated random sequence "a" = [1, 2, 3, 4, 5, 6] <- pretend these are random
  149. random_crop_op2 = c_vision.RandomCrop([512, 512], [200, 200, 200, 200])
  150. data2 = data2.map(operations=random_crop_op2, input_columns=["image"])
  151. try:
  152. dataset_equal(data1, data2, 0)
  153. except Exception as e:
  154. # two datasets both use numbers from the generated sequence "a"
  155. logger.info("Got an exception in DE: {}".format(str(e)))
  156. assert "Array" in str(e)
  157. # Restore original configuration values
  158. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  159. ds.config.set_seed(seed_original)
  160. def test_seed_deterministic():
  161. """
  162. Test deterministic run with setting the seed, only works with num_parallel worker = 1
  163. """
  164. logger.info("test_seed_deterministic")
  165. # Save original configuration values
  166. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  167. seed_original = ds.config.get_seed()
  168. ds.config.set_seed(0)
  169. ds.config.set_num_parallel_workers(1)
  170. # First dataset
  171. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  172. # seed will be read in during constructor call
  173. random_crop_op = c_vision.RandomCrop([512, 512], [200, 200, 200, 200])
  174. decode_op = c_vision.Decode()
  175. data1 = data1.map(operations=decode_op, input_columns=["image"])
  176. data1 = data1.map(operations=random_crop_op, input_columns=["image"])
  177. # Second dataset
  178. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  179. data2 = data2.map(operations=decode_op, input_columns=["image"])
  180. # If seed is set up on constructor, so the two ops output deterministic sequence
  181. random_crop_op2 = c_vision.RandomCrop([512, 512], [200, 200, 200, 200])
  182. data2 = data2.map(operations=random_crop_op2, input_columns=["image"])
  183. dataset_equal(data1, data2, 0)
  184. # Restore original configuration values
  185. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  186. ds.config.set_seed(seed_original)
  187. def test_deterministic_run_distribution():
  188. """
  189. Test deterministic run with with setting the seed being used in a distribution
  190. """
  191. logger.info("test_deterministic_run_distribution")
  192. # Save original configuration values
  193. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  194. seed_original = ds.config.get_seed()
  195. # when we set the seed all operations within our dataset should be deterministic
  196. ds.config.set_seed(0)
  197. ds.config.set_num_parallel_workers(1)
  198. # First dataset
  199. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  200. random_horizontal_flip_op = c_vision.RandomHorizontalFlip(0.1)
  201. decode_op = c_vision.Decode()
  202. data1 = data1.map(operations=decode_op, input_columns=["image"])
  203. data1 = data1.map(operations=random_horizontal_flip_op, input_columns=["image"])
  204. # Second dataset
  205. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  206. data2 = data2.map(operations=decode_op, input_columns=["image"])
  207. # If seed is set up on constructor, so the two ops output deterministic sequence
  208. random_horizontal_flip_op2 = c_vision.RandomHorizontalFlip(0.1)
  209. data2 = data2.map(operations=random_horizontal_flip_op2, input_columns=["image"])
  210. dataset_equal(data1, data2, 0)
  211. # Restore original configuration values
  212. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  213. ds.config.set_seed(seed_original)
  214. def test_deterministic_python_seed():
  215. """
  216. Test deterministic execution with seed in python
  217. """
  218. logger.info("test_deterministic_python_seed")
  219. # Save original configuration values
  220. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  221. seed_original = ds.config.get_seed()
  222. ds.config.set_seed(0)
  223. ds.config.set_num_parallel_workers(1)
  224. # First dataset
  225. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  226. transforms = [
  227. py_vision.Decode(),
  228. py_vision.RandomCrop([512, 512], [200, 200, 200, 200]),
  229. py_vision.ToTensor(),
  230. ]
  231. transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)
  232. data1 = data1.map(operations=transform, input_columns=["image"])
  233. data1_output = []
  234. # config.set_seed() calls random.seed()
  235. for data_one in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
  236. data1_output.append(data_one["image"])
  237. # Second dataset
  238. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  239. data2 = data2.map(operations=transform, input_columns=["image"])
  240. # config.set_seed() calls random.seed(), resets seed for next dataset iterator
  241. ds.config.set_seed(0)
  242. data2_output = []
  243. for data_two in data2.create_dict_iterator(num_epochs=1, output_numpy=True):
  244. data2_output.append(data_two["image"])
  245. np.testing.assert_equal(data1_output, data2_output)
  246. # Restore original configuration values
  247. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  248. ds.config.set_seed(seed_original)
  249. def test_deterministic_python_seed_multi_thread():
  250. """
  251. Test deterministic execution with seed in python, this fails with multi-thread pyfunc run
  252. """
  253. logger.info("test_deterministic_python_seed_multi_thread")
  254. # Save original configuration values
  255. num_parallel_workers_original = ds.config.get_num_parallel_workers()
  256. seed_original = ds.config.get_seed()
  257. ds.config.set_num_parallel_workers(3)
  258. ds.config.set_seed(0)
  259. # when we set the seed all operations within our dataset should be deterministic
  260. # First dataset
  261. data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  262. transforms = [
  263. py_vision.Decode(),
  264. py_vision.RandomCrop([512, 512], [200, 200, 200, 200]),
  265. py_vision.ToTensor(),
  266. ]
  267. transform = mindspore.dataset.transforms.py_transforms.Compose(transforms)
  268. data1 = data1.map(operations=transform, input_columns=["image"], python_multiprocessing=True)
  269. data1_output = []
  270. # config.set_seed() calls random.seed()
  271. for data_one in data1.create_dict_iterator(num_epochs=1, output_numpy=True):
  272. data1_output.append(data_one["image"])
  273. # Second dataset
  274. data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False)
  275. # If seed is set up on constructor
  276. data2 = data2.map(operations=transform, input_columns=["image"], python_multiprocessing=True)
  277. # config.set_seed() calls random.seed()
  278. ds.config.set_seed(0)
  279. data2_output = []
  280. for data_two in data2.create_dict_iterator(num_epochs=1, output_numpy=True):
  281. data2_output.append(data_two["image"])
  282. try:
  283. np.testing.assert_equal(data1_output, data2_output)
  284. except Exception as e:
  285. # expect output to not match during multi-threaded excution
  286. logger.info("Got an exception in DE: {}".format(str(e)))
  287. assert "Array" in str(e)
  288. # Restore original configuration values
  289. ds.config.set_num_parallel_workers(num_parallel_workers_original)
  290. ds.config.set_seed(seed_original)
  291. def test_auto_num_workers_error():
  292. """
  293. Test auto_num_workers error
  294. """
  295. err_msg = ""
  296. try:
  297. ds.config.set_auto_num_workers([1, 2])
  298. except TypeError as e:
  299. err_msg = str(e)
  300. assert "isn't of type bool" in err_msg
  301. def test_auto_num_workers():
  302. """
  303. Test auto_num_workers can be set.
  304. """
  305. saved_config = ds.config.get_auto_num_workers()
  306. assert isinstance(saved_config, bool)
  307. # change to a different config
  308. flipped_config = not saved_config
  309. ds.config.set_auto_num_workers(flipped_config)
  310. assert flipped_config == ds.config.get_auto_num_workers()
  311. # now flip this back
  312. ds.config.set_auto_num_workers(saved_config)
  313. assert saved_config == ds.config.get_auto_num_workers()
  314. if __name__ == '__main__':
  315. test_basic()
  316. test_get_seed()
  317. test_pipeline()
  318. test_deterministic_run_fail()
  319. test_seed_undeterministic()
  320. test_seed_deterministic()
  321. test_deterministic_run_distribution()
  322. test_deterministic_python_seed()
  323. test_deterministic_python_seed_multi_thread()
  324. test_auto_num_workers_error()
  325. test_auto_num_workers()