You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_de.cc 7.9 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <string>
  17. #include <vector>
  18. #include "common/common_test.h"
  19. #include "include/api/types.h"
  20. #include "minddata/dataset/include/execute.h"
  21. #include "minddata/dataset/include/transforms.h"
  22. #include "minddata/dataset/include/vision.h"
  23. #ifdef ENABLE_ACL
  24. #include "minddata/dataset/include/vision_ascend.h"
  25. #endif
  26. #include "minddata/dataset/kernels/tensor_op.h"
  27. #include "include/api/model.h"
  28. #include "include/api/serialization.h"
  29. #include "include/api/context.h"
  30. using namespace mindspore;
  31. using namespace mindspore::dataset;
  32. using namespace mindspore::dataset::vision;
  33. class TestDE : public ST::Common {
  34. public:
  35. TestDE() {}
  36. };
  37. TEST_F(TestDE, TestResNetPreprocess) {
  38. // Read images
  39. std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
  40. mindspore::dataset::Tensor::CreateFromFile("./data/dataset/apple.jpg", &de_tensor);
  41. auto image = mindspore::MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
  42. // Define transform operations
  43. std::shared_ptr<TensorTransform> decode(new vision::Decode());
  44. std::shared_ptr<TensorTransform> resize(new vision::Resize({224, 224}));
  45. std::shared_ptr<TensorTransform> normalize(
  46. new vision::Normalize({0.485 * 255, 0.456 * 255, 0.406 * 255}, {0.229 * 255, 0.224 * 255, 0.225 * 255}));
  47. std::shared_ptr<TensorTransform> hwc2chw(new vision::HWC2CHW());
  48. mindspore::dataset::Execute Transform({decode, resize, normalize, hwc2chw});
  49. // Apply transform on images
  50. Status rc = Transform(image, &image);
  51. // Check image info
  52. ASSERT_TRUE(rc.IsOk());
  53. ASSERT_EQ(image.Shape().size(), 3);
  54. ASSERT_EQ(image.Shape()[0], 3);
  55. ASSERT_EQ(image.Shape()[1], 224);
  56. ASSERT_EQ(image.Shape()[2], 224);
  57. }
  58. TEST_F(TestDE, TestDvpp) {
  59. #ifdef ENABLE_ACL
  60. // Read images from target directory
  61. std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
  62. mindspore::dataset::Tensor::CreateFromFile("./data/dataset/apple.jpg", &de_tensor);
  63. auto image = MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
  64. // Define dvpp transform
  65. std::vector<uint32_t> crop_paras = {224, 224};
  66. std::vector<uint32_t> resize_paras = {256, 256};
  67. std::shared_ptr<TensorTransform> decode_resize_crop(new vision::DvppDecodeResizeCropJpeg(crop_paras, resize_paras));
  68. mindspore::dataset::Execute Transform(decode_resize_crop, MapTargetDevice::kAscend310);
  69. // Apply transform on images
  70. Status rc = Transform(image, &image);
  71. std::string aipp_cfg = Transform.AippCfgGenerator();
  72. ASSERT_EQ(aipp_cfg, "./aipp.cfg");
  73. // Check image info
  74. ASSERT_TRUE(rc.IsOk());
  75. ASSERT_EQ(image.Shape().size(), 3);
  76. int32_t real_h = 0;
  77. int32_t real_w = 0;
  78. int32_t remainder = crop_paras[crop_paras.size() - 1] % 16;
  79. if (crop_paras.size() == 1) {
  80. real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
  81. real_w = (remainder == 0) ? crop_paras[0] : crop_paras[0] + 16 - remainder;
  82. } else {
  83. real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
  84. real_w = (remainder == 0) ? crop_paras[1] : crop_paras[1] + 16 - remainder;
  85. }
  86. /* TODO Use in the future after compute college finish their job
  87. ASSERT_EQ(image.Shape()[0], real_h); // For image in YUV format, each pixel takes 1.5 byte
  88. ASSERT_EQ(image.Shape()[1], real_w);
  89. ASSERT_EQ(image.DataSize(), real_h * real_w * 1.5);
  90. */
  91. ASSERT_EQ(image.Shape()[0], 1.5 * real_h * real_w); // For image in YUV format, each pixel takes 1.5 byte
  92. ASSERT_EQ(image.Shape()[1], 1);
  93. ASSERT_EQ(image.Shape()[2], 1);
  94. ASSERT_EQ(image.DataSize(), real_h * real_w * 1.5);
  95. #endif
  96. }
  97. TEST_F(TestDE, TestDvppSinkMode) {
  98. #ifdef ENABLE_ACL
  99. // Read images from target directory
  100. std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
  101. mindspore::dataset::Tensor::CreateFromFile("./data/dataset/apple.jpg", &de_tensor);
  102. auto image = MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
  103. // Define dvpp transform
  104. std::vector<int32_t> crop_paras = {224, 224};
  105. std::vector<int32_t> resize_paras = {256};
  106. std::shared_ptr<TensorTransform> decode(new vision::Decode());
  107. std::shared_ptr<TensorTransform> resize(new vision::Resize(resize_paras));
  108. std::shared_ptr<TensorTransform> centercrop(new vision::CenterCrop(crop_paras));
  109. std::vector<std::shared_ptr<TensorTransform>> trans_list = {decode, resize, centercrop};
  110. mindspore::dataset::Execute Transform(trans_list, MapTargetDevice::kAscend310);
  111. // Apply transform on images
  112. Status rc = Transform(image, &image);
  113. // Check image info
  114. ASSERT_TRUE(rc.IsOk());
  115. ASSERT_EQ(image.Shape().size(), 3);
  116. int32_t real_h = 0;
  117. int32_t real_w = 0;
  118. int32_t remainder = crop_paras[crop_paras.size() - 1] % 16;
  119. if (crop_paras.size() == 1) {
  120. real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
  121. real_w = (remainder == 0) ? crop_paras[0] : crop_paras[0] + 16 - remainder;
  122. } else {
  123. real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
  124. real_w = (remainder == 0) ? crop_paras[1] : crop_paras[1] + 16 - remainder;
  125. }
  126. ASSERT_EQ(image.Shape()[0], 1.5 * real_h * real_w); // For image in YUV format, each pixel takes 1.5 byte
  127. ASSERT_EQ(image.Shape()[1], 1);
  128. ASSERT_EQ(image.Shape()[2], 1);
  129. ASSERT_EQ(image.DataSize(), real_h * real_w * 1.5);
  130. Transform.DeviceMemoryRelease();
  131. #endif
  132. }
  133. TEST_F(TestDE, TestDvppDecodeResizeCropNormalize) {
  134. #ifdef ENABLE_ACL
  135. std::shared_ptr<mindspore::dataset::Tensor> de_tensor;
  136. mindspore::dataset::Tensor::CreateFromFile("./data/dataset/apple.jpg", &de_tensor);
  137. auto image = MSTensor(std::make_shared<mindspore::dataset::DETensor>(de_tensor));
  138. // Define dvpp transform
  139. std::vector<int32_t> crop_paras = {416};
  140. std::vector<int32_t> resize_paras = {512};
  141. std::vector<float> mean = {0.485 * 255, 0.456 * 255, 0.406 * 255};
  142. std::vector<float> std = {0.229 * 255, 0.224 * 255, 0.225 * 255};
  143. std::shared_ptr<TensorTransform> decode(new vision::Decode());
  144. std::shared_ptr<TensorTransform> resize(new vision::Resize(resize_paras));
  145. std::shared_ptr<TensorTransform> centercrop(new vision::CenterCrop(crop_paras));
  146. std::shared_ptr<TensorTransform> normalize(new vision::Normalize(mean, std));
  147. std::vector<std::shared_ptr<TensorTransform>> trans_list = {decode, resize, centercrop, normalize};
  148. mindspore::dataset::Execute Transform(trans_list, MapTargetDevice::kAscend310);
  149. std::string aipp_cfg = Transform.AippCfgGenerator();
  150. ASSERT_EQ(aipp_cfg, "./aipp.cfg");
  151. // Apply transform on images
  152. Status rc = Transform(image, &image);
  153. // Check image info
  154. ASSERT_TRUE(rc.IsOk());
  155. ASSERT_EQ(image.Shape().size(), 3);
  156. int32_t real_h = 0;
  157. int32_t real_w = 0;
  158. int32_t remainder = crop_paras[crop_paras.size() - 1] % 16;
  159. if (crop_paras.size() == 1) {
  160. real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
  161. real_w = (remainder == 0) ? crop_paras[0] : crop_paras[0] + 16 - remainder;
  162. } else {
  163. real_h = (crop_paras[0] % 2 == 0) ? crop_paras[0] : crop_paras[0] + 1;
  164. real_w = (remainder == 0) ? crop_paras[1] : crop_paras[1] + 16 - remainder;
  165. }
  166. ASSERT_EQ(image.Shape()[0], 1.5 * real_h * real_w); // For image in YUV format, each pixel takes 1.5 byte
  167. ASSERT_EQ(image.Shape()[1], 1);
  168. ASSERT_EQ(image.Shape()[2], 1);
  169. ASSERT_EQ(image.DataSize(), real_h * real_w * 1.5);
  170. Transform.DeviceMemoryRelease();
  171. #endif
  172. }