You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

gnn_graph_test.cc 11 kB

5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include <algorithm>
  17. #include <string>
  18. #include <memory>
  19. #include <unordered_set>
  20. #include "common/common.h"
  21. #include "gtest/gtest.h"
  22. #include "minddata/dataset/util/status.h"
  23. #include "minddata/dataset/engine/gnn/node.h"
  24. #include "minddata/dataset/engine/gnn/graph_loader.h"
  25. using namespace mindspore::dataset;
  26. using namespace mindspore::dataset::gnn;
  27. #define print_int_vec(_i, _str) \
  28. do { \
  29. std::stringstream ss; \
  30. std::copy(_i.begin(), _i.end(), std::ostream_iterator<int>(ss, " ")); \
  31. MS_LOG(INFO) << _str << " " << ss.str(); \
  32. } while (false)
  33. class MindDataTestGNNGraph : public UT::Common {
  34. protected:
  35. MindDataTestGNNGraph() = default;
  36. };
  37. TEST_F(MindDataTestGNNGraph, TestGraphLoader) {
  38. std::string path = "data/mindrecord/testGraphData/testdata";
  39. GraphLoader gl(path, 4);
  40. EXPECT_TRUE(gl.InitAndLoad().IsOk());
  41. NodeIdMap n_id_map;
  42. EdgeIdMap e_id_map;
  43. NodeTypeMap n_type_map;
  44. EdgeTypeMap e_type_map;
  45. NodeFeatureMap n_feature_map;
  46. EdgeFeatureMap e_feature_map;
  47. DefaultNodeFeatureMap default_node_feature_map;
  48. DefaultEdgeFeatureMap default_edge_feature_map;
  49. EXPECT_TRUE(gl.GetNodesAndEdges(&n_id_map, &e_id_map, &n_type_map, &e_type_map, &n_feature_map, &e_feature_map,
  50. &default_node_feature_map, &default_edge_feature_map)
  51. .IsOk());
  52. EXPECT_EQ(n_id_map.size(), 20);
  53. EXPECT_EQ(e_id_map.size(), 40);
  54. EXPECT_EQ(n_type_map[2].size(), 10);
  55. EXPECT_EQ(n_type_map[1].size(), 10);
  56. }
  57. TEST_F(MindDataTestGNNGraph, TestGetAllNeighbors) {
  58. std::string path = "data/mindrecord/testGraphData/testdata";
  59. Graph graph(path, 1);
  60. Status s = graph.Init();
  61. EXPECT_TRUE(s.IsOk());
  62. MetaInfo meta_info;
  63. s = graph.GetMetaInfo(&meta_info);
  64. EXPECT_TRUE(s.IsOk());
  65. EXPECT_TRUE(meta_info.node_type.size() == 2);
  66. std::shared_ptr<Tensor> nodes;
  67. s = graph.GetAllNodes(meta_info.node_type[0], &nodes);
  68. EXPECT_TRUE(s.IsOk());
  69. std::vector<NodeIdType> node_list;
  70. for (auto itr = nodes->begin<NodeIdType>(); itr != nodes->end<NodeIdType>(); ++itr) {
  71. node_list.push_back(*itr);
  72. if (node_list.size() >= 10) {
  73. break;
  74. }
  75. }
  76. std::shared_ptr<Tensor> neighbors;
  77. s = graph.GetAllNeighbors(node_list, meta_info.node_type[1], &neighbors);
  78. EXPECT_TRUE(s.IsOk());
  79. EXPECT_TRUE(neighbors->shape().ToString() == "<10,6>");
  80. TensorRow features;
  81. s = graph.GetNodeFeature(nodes, meta_info.node_feature_type, &features);
  82. EXPECT_TRUE(s.IsOk());
  83. EXPECT_TRUE(features.size() == 4);
  84. EXPECT_TRUE(features[0]->shape().ToString() == "<10,5>");
  85. EXPECT_TRUE(features[0]->ToString() ==
  86. "Tensor (shape: <10,5>, Type: int32)\n"
  87. "[[0,1,0,0,0],[1,0,0,0,1],[0,0,1,1,0],[0,0,0,0,0],[1,1,0,1,0],[0,0,0,0,1],[0,1,0,0,0],[0,0,0,1,1],[0,1,1,"
  88. "0,0],[0,1,0,1,0]]");
  89. EXPECT_TRUE(features[1]->shape().ToString() == "<10>");
  90. EXPECT_TRUE(features[1]->ToString() ==
  91. "Tensor (shape: <10>, Type: float32)\n[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]");
  92. EXPECT_TRUE(features[2]->shape().ToString() == "<10>");
  93. EXPECT_TRUE(features[2]->ToString() == "Tensor (shape: <10>, Type: int32)\n[1,2,3,1,4,3,5,3,5,4]");
  94. }
  95. TEST_F(MindDataTestGNNGraph, TestGetSampledNeighbors) {
  96. std::string path = "data/mindrecord/testGraphData/testdata";
  97. Graph graph(path, 1);
  98. Status s = graph.Init();
  99. EXPECT_TRUE(s.IsOk());
  100. MetaInfo meta_info;
  101. s = graph.GetMetaInfo(&meta_info);
  102. EXPECT_TRUE(s.IsOk());
  103. EXPECT_TRUE(meta_info.node_type.size() == 2);
  104. std::shared_ptr<Tensor> edges;
  105. s = graph.GetAllEdges(meta_info.edge_type[0], &edges);
  106. EXPECT_TRUE(s.IsOk());
  107. std::vector<EdgeIdType> edge_list;
  108. edge_list.resize(edges->Size());
  109. std::transform(edges->begin<EdgeIdType>(), edges->end<EdgeIdType>(), edge_list.begin(),
  110. [](const EdgeIdType edge) { return edge; });
  111. TensorRow edge_features;
  112. s = graph.GetEdgeFeature(edges, meta_info.edge_feature_type, &edge_features);
  113. EXPECT_TRUE(s.IsOk());
  114. EXPECT_TRUE(edge_features[0]->ToString() ==
  115. "Tensor (shape: <40>, Type: int32)\n"
  116. "[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0,0,0,0,0]");
  117. EXPECT_TRUE(edge_features[1]->ToString() ==
  118. "Tensor (shape: <40>, Type: float32)\n"
  119. "[0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1,1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,2,2.1,2.2,2.3,2.4,2.5,2.6,2."
  120. "7,2.8,2.9,3,3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,4]");
  121. std::shared_ptr<Tensor> nodes;
  122. s = graph.GetNodesFromEdges(edge_list, &nodes);
  123. EXPECT_TRUE(s.IsOk());
  124. std::unordered_set<NodeIdType> node_set;
  125. std::vector<NodeIdType> node_list;
  126. int index = 0;
  127. for (auto itr = nodes->begin<NodeIdType>(); itr != nodes->end<NodeIdType>(); ++itr) {
  128. index++;
  129. if (index % 2 == 0) {
  130. continue;
  131. }
  132. node_set.emplace(*itr);
  133. if (node_set.size() >= 5) {
  134. break;
  135. }
  136. }
  137. node_list.resize(node_set.size());
  138. std::transform(node_set.begin(), node_set.end(), node_list.begin(), [](const NodeIdType node) { return node; });
  139. std::shared_ptr<Tensor> neighbors;
  140. s = graph.GetSampledNeighbors(node_list, {10}, {meta_info.node_type[1]}, &neighbors);
  141. EXPECT_TRUE(s.IsOk());
  142. EXPECT_TRUE(neighbors->shape().ToString() == "<5,11>");
  143. neighbors.reset();
  144. s = graph.GetSampledNeighbors(node_list, {2, 3}, {meta_info.node_type[1], meta_info.node_type[0]}, &neighbors);
  145. EXPECT_TRUE(s.IsOk());
  146. EXPECT_TRUE(neighbors->shape().ToString() == "<5,9>");
  147. neighbors.reset();
  148. s = graph.GetSampledNeighbors(node_list, {2, 3, 4},
  149. {meta_info.node_type[1], meta_info.node_type[0], meta_info.node_type[1]}, &neighbors);
  150. EXPECT_TRUE(s.IsOk());
  151. EXPECT_TRUE(neighbors->shape().ToString() == "<5,33>");
  152. neighbors.reset();
  153. s = graph.GetSampledNeighbors({}, {10}, {meta_info.node_type[1]}, &neighbors);
  154. EXPECT_TRUE(s.ToString().find("Input node_list is empty.") != std::string::npos);
  155. neighbors.reset();
  156. s = graph.GetSampledNeighbors({-1, 1}, {10}, {meta_info.node_type[1]}, &neighbors);
  157. EXPECT_TRUE(s.ToString().find("Invalid node id") != std::string::npos);
  158. neighbors.reset();
  159. s = graph.GetSampledNeighbors(node_list, {2, 50}, {meta_info.node_type[0], meta_info.node_type[1]}, &neighbors);
  160. EXPECT_TRUE(s.ToString().find("Wrong samples number") != std::string::npos);
  161. neighbors.reset();
  162. s = graph.GetSampledNeighbors(node_list, {2}, {5}, &neighbors);
  163. EXPECT_TRUE(s.ToString().find("Invalid neighbor type") != std::string::npos);
  164. neighbors.reset();
  165. s = graph.GetSampledNeighbors(node_list, {2, 3, 4}, {meta_info.node_type[1], meta_info.node_type[0]}, &neighbors);
  166. EXPECT_TRUE(s.ToString().find("The sizes of neighbor_nums and neighbor_types are inconsistent.") !=
  167. std::string::npos);
  168. neighbors.reset();
  169. s = graph.GetSampledNeighbors({301}, {10}, {meta_info.node_type[1]}, &neighbors);
  170. EXPECT_TRUE(s.ToString().find("Invalid node id:301") != std::string::npos);
  171. }
  172. TEST_F(MindDataTestGNNGraph, TestGetNegSampledNeighbors) {
  173. std::string path = "data/mindrecord/testGraphData/testdata";
  174. Graph graph(path, 1);
  175. Status s = graph.Init();
  176. EXPECT_TRUE(s.IsOk());
  177. MetaInfo meta_info;
  178. s = graph.GetMetaInfo(&meta_info);
  179. EXPECT_TRUE(s.IsOk());
  180. EXPECT_TRUE(meta_info.node_type.size() == 2);
  181. std::shared_ptr<Tensor> nodes;
  182. s = graph.GetAllNodes(meta_info.node_type[0], &nodes);
  183. EXPECT_TRUE(s.IsOk());
  184. std::vector<NodeIdType> node_list;
  185. for (auto itr = nodes->begin<NodeIdType>(); itr != nodes->end<NodeIdType>(); ++itr) {
  186. node_list.push_back(*itr);
  187. if (node_list.size() >= 10) {
  188. break;
  189. }
  190. }
  191. std::shared_ptr<Tensor> neg_neighbors;
  192. s = graph.GetNegSampledNeighbors(node_list, 3, meta_info.node_type[1], &neg_neighbors);
  193. EXPECT_TRUE(s.IsOk());
  194. EXPECT_TRUE(neg_neighbors->shape().ToString() == "<10,4>");
  195. neg_neighbors.reset();
  196. s = graph.GetNegSampledNeighbors({}, 3, meta_info.node_type[1], &neg_neighbors);
  197. EXPECT_TRUE(s.ToString().find("Input node_list is empty.") != std::string::npos);
  198. neg_neighbors.reset();
  199. s = graph.GetNegSampledNeighbors({-1, 1}, 3, meta_info.node_type[1], &neg_neighbors);
  200. EXPECT_TRUE(s.ToString().find("Invalid node id") != std::string::npos);
  201. neg_neighbors.reset();
  202. s = graph.GetNegSampledNeighbors(node_list, 50, meta_info.node_type[1], &neg_neighbors);
  203. EXPECT_TRUE(s.ToString().find("Wrong samples number") != std::string::npos);
  204. neg_neighbors.reset();
  205. s = graph.GetNegSampledNeighbors(node_list, 3, 3, &neg_neighbors);
  206. EXPECT_TRUE(s.ToString().find("Invalid neighbor type") != std::string::npos);
  207. }
  208. TEST_F(MindDataTestGNNGraph, TestRandomWalk) {
  209. std::string path = "data/mindrecord/testGraphData/sns";
  210. Graph graph(path, 1);
  211. Status s = graph.Init();
  212. EXPECT_TRUE(s.IsOk());
  213. MetaInfo meta_info;
  214. s = graph.GetMetaInfo(&meta_info);
  215. EXPECT_TRUE(s.IsOk());
  216. std::shared_ptr<Tensor> nodes;
  217. s = graph.GetAllNodes(meta_info.node_type[0], &nodes);
  218. EXPECT_TRUE(s.IsOk());
  219. std::vector<NodeIdType> node_list;
  220. for (auto itr = nodes->begin<NodeIdType>(); itr != nodes->end<NodeIdType>(); ++itr) {
  221. node_list.push_back(*itr);
  222. }
  223. print_int_vec(node_list, "node list ");
  224. std::vector<NodeType> meta_path(59, 1);
  225. std::shared_ptr<Tensor> walk_path;
  226. s = graph.RandomWalk(node_list, meta_path, 2.0, 0.5, -1, &walk_path);
  227. EXPECT_TRUE(s.IsOk());
  228. EXPECT_TRUE(walk_path->shape().ToString() == "<33,60>");
  229. }
  230. TEST_F(MindDataTestGNNGraph, TestRandomWalkDefaults) {
  231. std::string path = "data/mindrecord/testGraphData/sns";
  232. Graph graph(path, 1);
  233. Status s = graph.Init();
  234. EXPECT_TRUE(s.IsOk());
  235. MetaInfo meta_info;
  236. s = graph.GetMetaInfo(&meta_info);
  237. EXPECT_TRUE(s.IsOk());
  238. std::shared_ptr<Tensor> nodes;
  239. s = graph.GetAllNodes(meta_info.node_type[0], &nodes);
  240. EXPECT_TRUE(s.IsOk());
  241. std::vector<NodeIdType> node_list;
  242. for (auto itr = nodes->begin<NodeIdType>(); itr != nodes->end<NodeIdType>(); ++itr) {
  243. node_list.push_back(*itr);
  244. }
  245. print_int_vec(node_list, "node list ");
  246. std::vector<NodeType> meta_path(59, 1);
  247. std::shared_ptr<Tensor> walk_path;
  248. s = graph.RandomWalk(node_list, meta_path, 1.0, 1.0, -1, &walk_path);
  249. EXPECT_TRUE(s.IsOk());
  250. EXPECT_TRUE(walk_path->shape().ToString() == "<33,60>");
  251. }