You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

README.md 16 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386
  1. # MindSpore Lite 端侧骨骼检测demo(Android)
  2. 本示例程序演示了如何在端侧利用MindSpore Lite API以及MindSpore Lite骨骼检测模型完成端侧推理,对设备摄像头捕获的内容进行检测,并在App图像预览界面中显示连续目标检测结果。
  3. ## 运行依赖
  4. - Android Studio >= 3.2 (推荐4.0以上版本)
  5. - NDK 21.3
  6. - CMake 3.10
  7. - Android SDK >= 26
  8. ## 构建与运行
  9. 1. 在Android Studio中加载本示例源码,并安装相应的SDK(指定SDK版本后,由Android Studio自动安装)。
  10. ![start_home](images/home.png)
  11. 启动Android Studio后,点击`File->Settings->System Settings->Android SDK`,勾选相应的SDK。如下图所示,勾选后,点击`OK`,Android Studio即可自动安装SDK。
  12. ![start_sdk](images/sdk_management.png)
  13. 使用过程中若出现Android Studio配置问题,可参考第5项解决。
  14. 2. 连接Android设备,运行骨骼检测示例应用程序。
  15. 通过USB连接Android设备调试,点击`Run 'app'`即可在你的设备上运行本示例项目。
  16. > 编译过程中Android Studio会自动下载MindSpore Lite、模型文件等相关依赖项,编译过程需做耐心等待。
  17. ![run_app](images/run_app.PNG)
  18. Android Studio连接设备调试操作,可参考<https://developer.android.com/studio/run/device?hl=zh-cn>。
  19. 3. 在Android设备上,点击“继续安装”,安装完即可查看到设备摄像头捕获的内容和推理结果。
  20. ![install](images/install.jpg)
  21. 使用骨骼检测模型的输出如图:
  22. 蓝色标识点检测人体面部的五官分布及上肢、下肢的骨骼走势。此次推理置信分数0.98/1,推理时延66.77ms。
  23. ![sult](images/posenet_detection.png)
  24. 4. Android Studio 配置问题解决方案可参考下表:
  25. | | 报错 | 解决方案 |
  26. | ---- | ------------------------------------------------------------ | ------------------------------------------------------------ |
  27. | 1 | Gradle sync failed: NDK not configured. | 在local.properties中指定安装的ndk目录:ndk.dir={ndk的安装目录} |
  28. | 2 | Requested NDK version did not match the version requested by ndk.dir | 可手动下载相应的[NDK版本](https://developer.android.com/ndk/downloads?hl=zh-cn),并在Project Structure - Android NDK location设置中指定SDK的位置(可参考下图完成) |
  29. | 3 | This version of Android Studio cannot open this project, please retry with Android Studio or newer. | 在工具栏-help-Checkout for Updates中更新版本 |
  30. | 4 | SSL peer shut down incorrectly | 重新构建 |
  31. ![project_structure](images/project_structure.png)
  32. ## 示例程序详细说明
  33. 骨骼检测Android示例程序通过Android Camera 2 API实现摄像头获取图像帧,以及相应的图像处理等功能,在[Runtime](https://www.mindspore.cn/tutorial/lite/zh-CN/master/use/runtime.html)中完成模型推理的过程。
  34. ### 示例程序结构
  35. ```text
  36. ├── app
  37. │   ├── build.gradle # 其他Android配置文件
  38. │   ├── download.gradle # APP构建时由gradle自动从HuaWei Server下载依赖的库文件及模型文件
  39. │   ├── proguard-rules.pro
  40. │   └── src
  41. │   ├── main
  42. │   │   ├── AndroidManifest.xml # Android配置文件
  43. │   │   ├── java # java层应用代码
  44. │   │   │   └── com
  45. │   │   │   └── mindspore
  46. │   │   │   └── posenetdemo # 图像处理及推理流程实现
  47. │   │   │   ├── CameraDataDealListener.java
  48. │   │   │   ├── ImageUtils.java
  49. │   │   │   ├── MainActivity.java
  50. │   │   │   ├── PoseNetFragment.java
  51. │   │   │   ├── Posenet.java #
  52. │   │   │   └── TestActivity.java
  53. │   │   └── res # 存放Android相关的资源文件
  54. │   └── test
  55. └── ...
  56. ```
  57. ### 下载及部署模型文件
  58. 从MindSpore Model Hub中下载模型文件,本示例程序中使用的目标检测模型文件为`posenet_model.ms`,同样通过`download.gradle`脚本在APP构建时自动下载,并放置在`app/src/main/assets`工程目录下。
  59. > 若下载失败请手动下载模型文件,posenet_model.ms [下载链接](https://download.mindspore.cn/model_zoo/official/lite/posenet_lite/posenet_model.ms)。
  60. ### 编写端侧推理代码
  61. 在骨骼检测demo中,使用Java API实现端测推理。相比于C++ API,Java API可以直接在Java Class中调用,无需实现JNI层的相关代码,具有更好的便捷性。
  62. - 本实例通过识别鼻子眼睛等身体特征、获取身体特征位置、计算结果的置信分数,来实现骨骼检测的目的。
  63. ```java
  64. public enum BodyPart {
  65. NOSE,
  66. LEFT_EYE,
  67. RIGHT_EYE,
  68. LEFT_EAR,
  69. RIGHT_EAR,
  70. LEFT_SHOULDER,
  71. RIGHT_SHOULDER,
  72. LEFT_ELBOW,
  73. RIGHT_ELBOW,
  74. LEFT_WRIST,
  75. RIGHT_WRIST,
  76. LEFT_HIP,
  77. RIGHT_HIP,
  78. LEFT_KNEE,
  79. RIGHT_KNEE,
  80. LEFT_ANKLE,
  81. RIGHT_ANKLE
  82. }
  83. public class Position {
  84. int x;
  85. int y;
  86. }
  87. public class KeyPoint {
  88. BodyPart bodyPart = BodyPart.NOSE;
  89. Position position = new Position();
  90. float score = 0.0f;
  91. }
  92. public class Person {
  93. List<KeyPoint> keyPoints;
  94. float score = 0.0f;
  95. }
  96. ```
  97. 骨骼检测demo推理代码流程如下,完整代码请参见:`src/main/java/com/mindspore/posenetdemo/Posenet.java`。
  98. 1. 加载MindSpore Lite模型文件,构建上下文、会话以及用于推理的计算图。
  99. - 加载模型:从文件系统中读取MindSpore Lite模型,并进行模型解析。
  100. ```java
  101. // Load the .ms model.
  102. model = new Model();
  103. if (!model.loadModel(mContext, "posenet_model.ms")) {
  104. Log.e("MS_LITE", "Load Model failed");
  105. return false;
  106. }
  107. ```
  108. - 创建配置上下文:创建配置上下文`MSConfig`,保存会话所需的一些基本配置参数,用于指导图编译和图执行。
  109. ```java
  110. // Create and init config.
  111. msConfig = new MSConfig();
  112. if (!msConfig.init(DeviceType.DT_CPU, NUM_THREADS, CpuBindMode.MID_CPU)) {
  113. Log.e("MS_LITE", "Init context failed");
  114. return false;
  115. }
  116. ```
  117. - 创建会话:创建`LiteSession`,并调用`init`方法将上一步得到`MSConfig`配置到会话中。
  118. ```java
  119. // Create the MindSpore lite session.
  120. session = new LiteSession();
  121. if (!session.init(msConfig)) {
  122. Log.e("MS_LITE", "Create session failed");
  123. msConfig.free();
  124. return false;
  125. }
  126. msConfig.free();
  127. ```
  128. - 加载模型文件并构建用于推理的计算图
  129. ```java
  130. // Complile graph.
  131. if (!session.compileGraph(model)) {
  132. Log.e("MS_LITE", "Compile graph failed");
  133. model.freeBuffer();
  134. return false;
  135. }
  136. // Note: when use model.freeBuffer(), the model can not be complile graph again.
  137. model.freeBuffer();
  138. ```
  139. 2. 输入数据: Java目前支持`byte[]`或者`ByteBuffer`两种类型的数据,设置输入Tensor的数据。
  140. - 在输入数据之前,需要对存储图像信息的Bitmap进行解读分析与转换。
  141. ```java
  142. /**
  143. * Scale the image to a byteBuffer of [-1,1] values.
  144. */
  145. private ByteBuffer initInputArray(Bitmap bitmap) {
  146. final int bytesPerChannel = 4;
  147. final int inputChannels = 3;
  148. final int batchSize = 1;
  149. ByteBuffer inputBuffer = ByteBuffer.allocateDirect(
  150. batchSize * bytesPerChannel * bitmap.getHeight() * bitmap.getWidth() * inputChannels
  151. );
  152. inputBuffer.order(ByteOrder.nativeOrder());
  153. inputBuffer.rewind();
  154. final float mean = 128.0f;
  155. final float std = 128.0f;
  156. int[] intValues = new int[bitmap.getWidth() * bitmap.getHeight()];
  157. bitmap.getPixels(intValues, 0, bitmap.getWidth(), 0, 0, bitmap.getWidth(), bitmap.getHeight());
  158. int pixel = 0;
  159. for (int y = 0; y < bitmap.getHeight(); y++) {
  160. for (int x = 0; x < bitmap.getWidth(); x++) {
  161. int value = intValues[pixel++];
  162. inputBuffer.putFloat(((float) (value >> 16 & 0xFF) - mean) / std);
  163. inputBuffer.putFloat(((float) (value >> 8 & 0xFF) - mean) / std);
  164. inputBuffer.putFloat(((float) (value & 0xFF) - mean) / std);
  165. }
  166. }
  167. return inputBuffer;
  168. }
  169. ```
  170. - 通过`ByteBuffer`输入数据。
  171. ```java
  172. long estimationStartTimeNanos = SystemClock.elapsedRealtimeNanos();
  173. ByteBuffer inputArray = this.initInputArray(bitmap);
  174. List<MSTensor> inputs = session.getInputs();
  175. if (inputs.size() != 1) {
  176. return null;
  177. }
  178. Log.i("posenet", String.format("Scaling to [-1,1] took %.2f ms",
  179. 1.0f * (SystemClock.elapsedRealtimeNanos() - estimationStartTimeNanos) / 1_000_000));
  180. MSTensor inTensor = inputs.get(0);
  181. inTensor.setData(inputArray);
  182. long inferenceStartTimeNanos = SystemClock.elapsedRealtimeNanos();
  183. ```
  184. 3. 对输入Tensor按照模型进行推理,获取输出Tensor,并进行后处理。
  185. - 使用`runGraph`进行模型推理。
  186. ```java
  187. // Run graph to infer results.
  188. if (!session.runGraph()) {
  189. Log.e("MS_LITE", "Run graph failed");
  190. return null;
  191. }
  192. lastInferenceTimeNanos = SystemClock.elapsedRealtimeNanos() - inferenceStartTimeNanos;
  193. Log.i(
  194. "posenet",
  195. String.format("Interpreter took %.2f ms", 1.0f * lastInferenceTimeNanos / 1_000_000)
  196. );
  197. ```
  198. - 通过输出Tensor得到推理结果。
  199. ```java
  200. // Get output tensor values.
  201. List<MSTensor> heatmaps_list = session.getOutputsByNodeName("Conv2D-27");
  202. if (heatmaps_list == null) {
  203. return null;
  204. }
  205. MSTensor heatmaps_tensors = heatmaps_list.get(0);
  206. float[] heatmaps_results = heatmaps_tensors.getFloatData();
  207. int[] heatmapsShape = heatmaps_tensors.getShape(); //1, 9, 9 ,17
  208. float[][][][] heatmaps = new float[heatmapsShape[0]][][][];
  209. for (int x = 0; x < heatmapsShape[0]; x++) { // heatmapsShape[0] =1
  210. float[][][] arrayThree = new float[heatmapsShape[1]][][];
  211. for (int y = 0; y < heatmapsShape[1]; y++) { // heatmapsShape[1] = 9
  212. float[][] arrayTwo = new float[heatmapsShape[2]][];
  213. for (int z = 0; z < heatmapsShape[2]; z++) { //heatmapsShape[2] = 9
  214. float[] arrayOne = new float[heatmapsShape[3]]; //heatmapsShape[3] = 17
  215. for (int i = 0; i < heatmapsShape[3]; i++) {
  216. int n = i + z * heatmapsShape[3] + y * heatmapsShape[2] * heatmapsShape[3] + x * heatmapsShape[1] * heatmapsShape[2] * heatmapsShape[3];
  217. arrayOne[i] = heatmaps_results[n]; //1*9*9*17 ??
  218. }
  219. arrayTwo[z] = arrayOne;
  220. }
  221. arrayThree[y] = arrayTwo;
  222. }
  223. heatmaps[x] = arrayThree;
  224. }
  225. List<MSTensor> offsets_list = session.getOutputsByNodeName("Conv2D-28");
  226. if (offsets_list == null) {
  227. return null;
  228. }
  229. MSTensor offsets_tensors = offsets_list.get(0);
  230. float[] offsets_results = offsets_tensors.getFloatData();
  231. int[] offsetsShapes = offsets_tensors.getShape();
  232. float[][][][] offsets = new float[offsetsShapes[0]][][][];
  233. for (int x = 0; x < offsetsShapes[0]; x++) {
  234. float[][][] offsets_arrayThree = new float[offsetsShapes[1]][][];
  235. for (int y = 0; y < offsetsShapes[1]; y++) {
  236. float[][] offsets_arrayTwo = new float[offsetsShapes[2]][];
  237. for (int z = 0; z < offsetsShapes[2]; z++) {
  238. float[] offsets_arrayOne = new float[offsetsShapes[3]];
  239. for (int i = 0; i < offsetsShapes[3]; i++) {
  240. int n = i + z * offsetsShapes[3] + y * offsetsShapes[2] * offsetsShapes[3] + x * offsetsShapes[1] * offsetsShapes[2] * offsetsShapes[3];
  241. offsets_arrayOne[i] = offsets_results[n];
  242. }
  243. offsets_arrayTwo[z] = offsets_arrayOne;
  244. }
  245. offsets_arrayThree[y] = offsets_arrayTwo;
  246. }
  247. offsets[x] = offsets_arrayThree;
  248. }
  249. ```
  250. - 对输出节点的数据进行处理,得到骨骼检测demo的返回值`person`,实现功能。
  251. `Conv2D-27`中,`heatmaps`存储`height`、`weight`、`numKeypoints`三种参数,可用于求出`keypointPosition`位置信息。
  252. `Conv2D-28`中,`offset`代表位置坐标的偏移量,与`keypointPosition`结合可获取`confidenceScores`置信分数,用于判断模型推理结果。
  253. 通过`keypointPosition`与`confidenceScores`,获取`person.keyPoints`和`person.score`,得到模型的返回值`person`。
  254. ```java
  255. int height = ((Object[]) heatmaps[0]).length; //9
  256. int width = ((Object[]) heatmaps[0][0]).length; //9
  257. int numKeypoints = heatmaps[0][0][0].length; //17
  258. // Finds the (row, col) locations of where the keypoints are most likely to be.
  259. Pair[] keypointPositions = new Pair[numKeypoints];
  260. for (int i = 0; i < numKeypoints; i++) {
  261. keypointPositions[i] = new Pair(0, 0);
  262. }
  263. for (int keypoint = 0; keypoint < numKeypoints; keypoint++) {
  264. float maxVal = heatmaps[0][0][0][keypoint];
  265. int maxRow = 0;
  266. int maxCol = 0;
  267. for (int row = 0; row < height; row++) {
  268. for (int col = 0; col < width; col++) {
  269. if (heatmaps[0][row][col][keypoint] > maxVal) {
  270. maxVal = heatmaps[0][row][col][keypoint];
  271. maxRow = row;
  272. maxCol = col;
  273. }
  274. }
  275. }
  276. keypointPositions[keypoint] = new Pair(maxRow, maxCol);
  277. }
  278. // Calculating the x and y coordinates of the keypoints with offset adjustment.
  279. int[] xCoords = new int[numKeypoints];
  280. int[] yCoords = new int[numKeypoints];
  281. float[] confidenceScores = new float[numKeypoints];
  282. for (int i = 0; i < keypointPositions.length; i++) {
  283. Pair position = keypointPositions[i];
  284. int positionY = (int) position.first;
  285. int positionX = (int) position.second;
  286. yCoords[i] = (int) ((float) positionY / (float) (height - 1) * bitmap.getHeight() + offsets[0][positionY][positionX][i]);
  287. xCoords[i] = (int) ((float) positionX / (float) (width - 1) * bitmap.getWidth() + offsets[0][positionY][positionX][i + numKeypoints]);
  288. confidenceScores[i] = sigmoid(heatmaps[0][positionY][positionX][i]);
  289. }
  290. Person person = new Person();
  291. KeyPoint[] keypointList = new KeyPoint[numKeypoints];
  292. for (int i = 0; i < numKeypoints; i++) {
  293. keypointList[i] = new KeyPoint();
  294. }
  295. float totalScore = 0.0f;
  296. for (int i = 0; i < keypointList.length; i++) {
  297. keypointList[i].position.x = xCoords[i];
  298. keypointList[i].position.y = yCoords[i];
  299. keypointList[i].score = confidenceScores[i];
  300. totalScore += confidenceScores[i];
  301. }
  302. person.keyPoints = Arrays.asList(keypointList);
  303. person.score = totalScore / numKeypoints;
  304. return person;
  305. ```