You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

pynative_execute_ge.cc 12 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309
  1. /**
  2. * Copyright 2020 Huawei Technologies Co., Ltd
  3. *
  4. * Licensed under the Apache License, Version 2.0 (the "License");
  5. * you may not use this file except in compliance with the License.
  6. * You may obtain a copy of the License at
  7. *
  8. * http://www.apache.org/licenses/LICENSE-2.0
  9. *
  10. * Unless required by applicable law or agreed to in writing, software
  11. * distributed under the License is distributed on an "AS IS" BASIS,
  12. * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  13. * See the License for the specific language governing permissions and
  14. * limitations under the License.
  15. */
  16. #include "pynative/pynative_execute_ge.h"
  17. #include <typeinfo>
  18. #include <map>
  19. #include <set>
  20. #include <unordered_set>
  21. #include "utils/any.h"
  22. #include "utils/utils.h"
  23. #include "utils/context/ms_context.h"
  24. #include "operator/ops.h"
  25. #include "pipeline/parse/data_converter.h"
  26. #include "pipeline/static_analysis/prim.h"
  27. #include "session/session_factory.h"
  28. const char SINGLE_OP_GRAPH[] = "single_op_graph";
  29. namespace mindspore {
  30. namespace pynative {
  31. using MeTensor = mindspore::tensor::Tensor;
  32. using MeTensorPtr = mindspore::tensor::TensorPtr;
  33. using GeOperator = ge::Operator;
  34. using GeOperatorPtr = std::shared_ptr<GeOperator>;
  35. using transform::GraphRunner;
  36. using transform::GraphRunnerOptions;
  37. using transform::OperatorPtr;
  38. static std::shared_ptr<session::SessionBasic> session = nullptr;
  39. inline ValuePtr PyAttrValue(const py::object &obj) {
  40. ValuePtr converted_ret = nullptr;
  41. bool converted = parse::ConvertData(obj, &converted_ret);
  42. if (!converted) {
  43. MS_LOG(EXCEPTION) << "Attribute convert error with type:" << std::string(py::str(obj));
  44. }
  45. return converted_ret;
  46. }
  47. MeTensorPtr ConvertPyObjToTensor(const py::object &obj) {
  48. MeTensorPtr me_tensor_ptr = nullptr;
  49. if (py::isinstance<MeTensor>(obj)) {
  50. me_tensor_ptr = py::cast<MeTensorPtr>(obj);
  51. } else if (py::isinstance<py::tuple>(obj)) {
  52. me_tensor_ptr = std::make_shared<MeTensor>(py::cast<py::tuple>(obj), nullptr);
  53. } else if (py::isinstance<py::float_>(obj)) {
  54. me_tensor_ptr = std::make_shared<MeTensor>(py::cast<py::float_>(obj), nullptr);
  55. } else if (py::isinstance<py::int_>(obj)) {
  56. me_tensor_ptr = std::make_shared<MeTensor>(py::cast<py::int_>(obj), nullptr);
  57. } else if (py::isinstance<py::list>(obj)) {
  58. me_tensor_ptr = std::make_shared<MeTensor>(py::cast<py::list>(obj), nullptr);
  59. } else if (py::isinstance<py::array>(obj)) {
  60. me_tensor_ptr = std::make_shared<MeTensor>(py::cast<py::array>(obj), nullptr);
  61. } else {
  62. MS_LOG(EXCEPTION) << "Run op inputs type is invalid!";
  63. }
  64. return me_tensor_ptr;
  65. }
  66. bool SetInputsForSingleOpGraph(const OpExecInfoPtr &op_exec_info, const std::vector<GeTensorPtr> &inputs,
  67. const OperatorPtr &op, std::vector<GeOperator> *graph_input_nodes) {
  68. MS_EXCEPTION_IF_NULL(op_exec_info);
  69. MS_EXCEPTION_IF_NULL(graph_input_nodes);
  70. auto op_inputs = op_exec_info->op_inputs;
  71. std::string op_name = op_exec_info->op_name;
  72. transform::OpAdapterPtr adapter = transform::DfGraphConvertor::FindAdapter(op_name, true);
  73. if (adapter == nullptr) {
  74. return false;
  75. }
  76. int op_input_idx = 1;
  77. size_t size = inputs.size();
  78. for (size_t i = 0; i < size; i++) {
  79. if (inputs[i] == nullptr) {
  80. continue;
  81. }
  82. auto const_op = std::make_shared<transform::Constant>();
  83. MS_EXCEPTION_IF_NULL(const_op);
  84. (void)const_op->set_attr_value(*inputs[i]);
  85. MeTensorPtr me_tensor_ptr = ConvertPyObjToTensor(op_inputs[i]);
  86. MS_EXCEPTION_IF_NULL(me_tensor_ptr);
  87. auto const_op_desc =
  88. transform::TransformUtil::GetGeTensorDesc(me_tensor_ptr->shape_c(), me_tensor_ptr->data_type(), kOpFormat_NCHW);
  89. if (const_op_desc == nullptr) {
  90. MS_LOG(ERROR) << "Create variable " << op_name << " output descriptor failed!";
  91. return false;
  92. }
  93. auto pointer_cast_const_op = std::static_pointer_cast<transform::Constant>(const_op);
  94. MS_EXCEPTION_IF_NULL(pointer_cast_const_op);
  95. (void)pointer_cast_const_op->update_output_desc_y(*const_op_desc);
  96. auto &input_map = adapter->getInputMap();
  97. if (input_map.find(op_input_idx) == input_map.end()) {
  98. continue;
  99. }
  100. if (adapter->setInput(op, op_input_idx++, const_op)) {
  101. MS_LOG(ERROR) << "Failed to set params, index is " << op_input_idx;
  102. return false;
  103. }
  104. graph_input_nodes->push_back(*const_op);
  105. }
  106. return true;
  107. }
  108. bool BuildSingleOpGraph(const OpExecInfoPtr &op_exec_info, const std::vector<GeTensorPtr> &inputs,
  109. const std::unordered_map<std::string, ValuePtr> &attrs, const GeGraphPtr &graph) {
  110. MS_EXCEPTION_IF_NULL(op_exec_info);
  111. std::string op_name = op_exec_info->op_name;
  112. auto op_inputs = op_exec_info->op_inputs;
  113. transform::OpAdapterPtr adapter = transform::DfGraphConvertor::FindAdapter(op_name, true);
  114. if (adapter == nullptr) {
  115. MS_LOG(ERROR) << "Unable to find Adapter for " << ((std::string)py::str(op_name));
  116. return false;
  117. }
  118. OperatorPtr op = adapter->generate(op_name);
  119. MS_EXCEPTION_IF_NULL(op);
  120. std::vector<GeOperator> graph_input_nodes;
  121. // hold param nodes after setting input and output for the graph
  122. // set input
  123. if (!SetInputsForSingleOpGraph(op_exec_info, inputs, op, &graph_input_nodes)) {
  124. return false;
  125. }
  126. // set attributes
  127. for (auto attr : attrs) {
  128. (void)adapter->setAttr(op, attr.first, attr.second);
  129. }
  130. // set default attributes
  131. auto extra_attrs = adapter->GetExtraAttr();
  132. for (auto attr : extra_attrs) {
  133. (void)adapter->setAttr(op, attr.first, attr.second);
  134. }
  135. // set input attributes
  136. auto &input_attr_map = adapter->getInputAttrMap();
  137. for (auto &it : input_attr_map) {
  138. if (op_inputs.size() < it.first) {
  139. continue;
  140. }
  141. auto const_value = PyAttrValue(op_inputs[it.first - 1]);
  142. if (const_value->isa<None>()) {
  143. continue;
  144. }
  145. it.second.set_attr(op, const_value);
  146. }
  147. // construct output data nodes
  148. std::vector<GeOperator> graph_outputs{*op};
  149. // set input and output nodes for the graph
  150. MS_EXCEPTION_IF_NULL(graph);
  151. (void)graph->SetInputs(graph_input_nodes).SetOutputs(graph_outputs);
  152. MS_LOG(INFO) << "BuildSingleOpGraph done";
  153. return true;
  154. }
  155. void ToTensorPtr(const OpExecInfoPtr op_exec_info, std::vector<GeTensorPtr> *const inputs) {
  156. MS_EXCEPTION_IF_NULL(inputs);
  157. MS_EXCEPTION_IF_NULL(op_exec_info);
  158. auto op_inputs = op_exec_info->op_inputs;
  159. size_t size = op_inputs.size();
  160. for (size_t i = 0; i < size; i++) {
  161. if (py::isinstance<py::none>(op_inputs[i])) {
  162. inputs->emplace_back(nullptr);
  163. continue;
  164. }
  165. MeTensorPtr me_tensor_ptr = ConvertPyObjToTensor(op_inputs[i]);
  166. auto ge_tensor_ptr = transform::TransformUtil::ConvertTensor(me_tensor_ptr, kOpFormat_NCHW);
  167. if (ge_tensor_ptr == nullptr) {
  168. MS_LOG(EXCEPTION) << "Convert inputs to GE tensor failed in op " << op_exec_info->op_name << ".";
  169. }
  170. // set inputs for operator to build single node graph
  171. inputs->push_back(ge_tensor_ptr);
  172. }
  173. }
  174. PynativeStatusCode ConvertAttributes(const OpExecInfoPtr &op_exec_info, const std::vector<GeTensorPtr> &inputs) {
  175. MS_EXCEPTION_IF_NULL(op_exec_info);
  176. auto op_attrs = op_exec_info->op_attrs;
  177. std::unordered_map<std::string, ValuePtr> attrs{};
  178. for (auto &item : op_attrs) {
  179. if (!py::isinstance<py::str>(item.first)) {
  180. MS_LOG(ERROR) << "Type error in py dict convert";
  181. return PYNATIVE_OP_ATTRS_ERR;
  182. }
  183. std::string name = py::cast<std::string>(item.first);
  184. auto attr_value = PyAttrValue(py::cast<py::object>(item.second));
  185. (void)attrs.emplace(name, attr_value);
  186. }
  187. // build graph
  188. GeGraphPtr graph = std::make_shared<GeGraph>(op_exec_info->op_name);
  189. if (BuildSingleOpGraph(op_exec_info, inputs, attrs, graph) == false) {
  190. MS_LOG(ERROR) << "Failed to BuildSingleOpGraph";
  191. return PYNATIVE_GRAPH_GE_BUILD_ERR;
  192. }
  193. // add the single op graph into the graph manager, which will be iterated by session.
  194. transform::Status ret =
  195. transform::DfGraphManager::GetInstance().AddGraph(SINGLE_OP_GRAPH, std::shared_ptr<transform::DfGraph>(graph));
  196. if (ret != transform::SUCCESS) {
  197. MS_LOG(ERROR) << "Failed to AddGraph into graph manager";
  198. return PYNATIVE_GRAPH_MANAGER_ERR;
  199. }
  200. return PYNATIVE_SUCCESS;
  201. }
  202. std::vector<MeTensorPtr> ConvertOutputTensors(const OpExecInfoPtr &op_exec_info,
  203. const std::vector<GeTensorPtr> &ge_tensors) {
  204. std::vector<MeTensorPtr> outputs;
  205. AbstractBasePtr abs_base = op_exec_info->abstract;
  206. std::vector<std::vector<int>> shapes;
  207. if (abs_base != nullptr && abs_base->isa<abstract::AbstractTensor>()) {
  208. auto arg_tensor = dyn_cast<abstract::AbstractTensor>(abs_base);
  209. shapes.emplace_back(arg_tensor->shape()->shape());
  210. outputs = transform::TransformUtil::ConvertGeTensors(ge_tensors, shapes);
  211. return outputs;
  212. }
  213. if (abs_base != nullptr && abs_base->isa<abstract::AbstractTuple>()) {
  214. auto arg_tuple = dyn_cast<abstract::AbstractTuple>(abs_base);
  215. size_t len = arg_tuple->size();
  216. for (size_t i = 0; i < len; i++) {
  217. if (arg_tuple->elements()[i]->isa<abstract::AbstractTensor>()) {
  218. auto arg_tensor = dyn_cast<abstract::AbstractTensor>(arg_tuple->elements()[i]);
  219. shapes.emplace_back(arg_tensor->shape()->shape());
  220. }
  221. }
  222. outputs = transform::TransformUtil::ConvertGeTensors(ge_tensors, shapes);
  223. return outputs;
  224. }
  225. for (auto &it : ge_tensors) {
  226. auto tensor = transform::TransformUtil::ConvertGeTensor(it);
  227. if (tensor != nullptr) {
  228. outputs.emplace_back(tensor);
  229. }
  230. }
  231. return outputs;
  232. }
  233. py::object RunOpInGE(const OpExecInfoPtr &op_exec_info, PynativeStatusCode *status) {
  234. MS_LOG(INFO) << "RunOpInGe start";
  235. MS_EXCEPTION_IF_NULL(op_exec_info);
  236. MS_EXCEPTION_IF_NULL(status);
  237. // returns a null py::tuple on error
  238. py::tuple err_ret(0);
  239. auto op_name = op_exec_info->op_name;
  240. transform::OpAdapterPtr adapter = transform::DfGraphConvertor::FindAdapter(op_name, true);
  241. if (adapter == nullptr) {
  242. MS_LOG(ERROR) << "Unable to find GE Adapter for " << ((std::string)py::str(op_name));
  243. *status = PYNATIVE_OP_NOT_IMPLEMENTED_ERR;
  244. return std::move(err_ret);
  245. }
  246. std::vector<GeTensorPtr> inputs{};
  247. ToTensorPtr(op_exec_info, &inputs);
  248. // convert me attr to ge AttrValue
  249. PynativeStatusCode ret = ConvertAttributes(op_exec_info, inputs);
  250. if (ret != PYNATIVE_SUCCESS) {
  251. *status = ret;
  252. return std::move(err_ret);
  253. }
  254. // run graph
  255. transform::RunOptions run_options;
  256. run_options.name = SINGLE_OP_GRAPH;
  257. std::vector<GeTensorPtr> ge_inputs;
  258. std::vector<GeTensorPtr> ge_outputs;
  259. transform::GraphRunnerOptions graph_runner_options;
  260. graph_runner_options.options["ge.trainFlag"] = "1";
  261. auto graph_runner = std::make_shared<transform::GraphRunner>(graph_runner_options);
  262. transform::Status run_ret;
  263. {
  264. // Release GIL before calling into (potentially long-running) C++ code
  265. py::gil_scoped_release release;
  266. run_ret = graph_runner->RunGraph(run_options, ge_inputs, &ge_outputs);
  267. }
  268. if (run_ret != transform::Status::SUCCESS) {
  269. MS_LOG(ERROR) << "GraphRunner fails to run graph";
  270. *status = PYNATIVE_GRAPH_GE_RUN_ERR;
  271. return std::move(err_ret);
  272. }
  273. std::vector<MeTensorPtr> graph_outputs = ConvertOutputTensors(op_exec_info, ge_outputs);
  274. size_t output_size = graph_outputs.size();
  275. py::tuple result(output_size);
  276. for (size_t i = 0; i < output_size; i++) {
  277. MS_EXCEPTION_IF_NULL(graph_outputs[i]);
  278. result[i] = *graph_outputs[i];
  279. }
  280. *status = PYNATIVE_SUCCESS;
  281. MS_LOG(INFO) << "RunOpInGe end";
  282. return std::move(result);
  283. }
  284. } // namespace pynative
  285. } // namespace mindspore