You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_invert.py 9.2 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing Invert op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset as ds
  20. import mindspore.dataset.transforms.py_transforms
  21. import mindspore.dataset.vision.py_transforms as F
  22. import mindspore.dataset.vision.c_transforms as C
  23. from mindspore import log as logger
  24. from util import visualize_list, save_and_check_md5, diff_mse
  25. DATA_DIR = "../data/dataset/testImageNetData/train/"
  26. GENERATE_GOLDEN = False
  27. def test_invert_py(plot=False):
  28. """
  29. Test Invert python op
  30. """
  31. logger.info("Test Invert Python op")
  32. # Original Images
  33. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  34. transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  35. F.Resize((224, 224)),
  36. F.ToTensor()])
  37. ds_original = data_set.map(operations=transforms_original, input_columns="image")
  38. ds_original = ds_original.batch(512)
  39. for idx, (image, _) in enumerate(ds_original):
  40. if idx == 0:
  41. images_original = np.transpose(image.asnumpy(), (0, 2, 3, 1))
  42. else:
  43. images_original = np.append(images_original,
  44. np.transpose(image.asnumpy(), (0, 2, 3, 1)),
  45. axis=0)
  46. # Color Inverted Images
  47. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  48. transforms_invert = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  49. F.Resize((224, 224)),
  50. F.Invert(),
  51. F.ToTensor()])
  52. ds_invert = data_set.map(operations=transforms_invert, input_columns="image")
  53. ds_invert = ds_invert.batch(512)
  54. for idx, (image, _) in enumerate(ds_invert):
  55. if idx == 0:
  56. images_invert = np.transpose(image.asnumpy(), (0, 2, 3, 1))
  57. else:
  58. images_invert = np.append(images_invert,
  59. np.transpose(image.asnumpy(), (0, 2, 3, 1)),
  60. axis=0)
  61. num_samples = images_original.shape[0]
  62. mse = np.zeros(num_samples)
  63. for i in range(num_samples):
  64. mse[i] = np.mean((images_invert[i] - images_original[i]) ** 2)
  65. logger.info("MSE= {}".format(str(np.mean(mse))))
  66. if plot:
  67. visualize_list(images_original, images_invert)
  68. def test_invert_c(plot=False):
  69. """
  70. Test Invert Cpp op
  71. """
  72. logger.info("Test Invert cpp op")
  73. # Original Images
  74. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  75. transforms_original = [C.Decode(), C.Resize(size=[224, 224])]
  76. ds_original = data_set.map(operations=transforms_original, input_columns="image")
  77. ds_original = ds_original.batch(512)
  78. for idx, (image, _) in enumerate(ds_original):
  79. if idx == 0:
  80. images_original = image.asnumpy()
  81. else:
  82. images_original = np.append(images_original,
  83. image.asnumpy(),
  84. axis=0)
  85. # Invert Images
  86. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  87. transform_invert = [C.Decode(), C.Resize(size=[224, 224]),
  88. C.Invert()]
  89. ds_invert = data_set.map(operations=transform_invert, input_columns="image")
  90. ds_invert = ds_invert.batch(512)
  91. for idx, (image, _) in enumerate(ds_invert):
  92. if idx == 0:
  93. images_invert = image.asnumpy()
  94. else:
  95. images_invert = np.append(images_invert,
  96. image.asnumpy(),
  97. axis=0)
  98. if plot:
  99. visualize_list(images_original, images_invert)
  100. num_samples = images_original.shape[0]
  101. mse = np.zeros(num_samples)
  102. for i in range(num_samples):
  103. mse[i] = diff_mse(images_invert[i], images_original[i])
  104. logger.info("MSE= {}".format(str(np.mean(mse))))
  105. def test_invert_py_c(plot=False):
  106. """
  107. Test Invert Cpp op and python op
  108. """
  109. logger.info("Test Invert cpp and python op")
  110. # Invert Images in cpp
  111. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  112. data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
  113. ds_c_invert = data_set.map(operations=C.Invert(), input_columns="image")
  114. ds_c_invert = ds_c_invert.batch(512)
  115. for idx, (image, _) in enumerate(ds_c_invert):
  116. if idx == 0:
  117. images_c_invert = image.asnumpy()
  118. else:
  119. images_c_invert = np.append(images_c_invert,
  120. image.asnumpy(),
  121. axis=0)
  122. # invert images in python
  123. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  124. data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
  125. transforms_p_invert = mindspore.dataset.transforms.py_transforms.Compose([lambda img: img.astype(np.uint8),
  126. F.ToPIL(),
  127. F.Invert(),
  128. np.array])
  129. ds_p_invert = data_set.map(operations=transforms_p_invert, input_columns="image")
  130. ds_p_invert = ds_p_invert.batch(512)
  131. for idx, (image, _) in enumerate(ds_p_invert):
  132. if idx == 0:
  133. images_p_invert = image.asnumpy()
  134. else:
  135. images_p_invert = np.append(images_p_invert,
  136. image.asnumpy(),
  137. axis=0)
  138. num_samples = images_c_invert.shape[0]
  139. mse = np.zeros(num_samples)
  140. for i in range(num_samples):
  141. mse[i] = diff_mse(images_p_invert[i], images_c_invert[i])
  142. logger.info("MSE= {}".format(str(np.mean(mse))))
  143. if plot:
  144. visualize_list(images_c_invert, images_p_invert, visualize_mode=2)
  145. def test_invert_one_channel():
  146. """
  147. Test Invert cpp op with one channel image
  148. """
  149. logger.info("Test Invert C Op With One Channel Images")
  150. c_op = C.Invert()
  151. try:
  152. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  153. data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224)),
  154. lambda img: np.array(img[:, :, 0])], input_columns=["image"])
  155. data_set.map(operations=c_op, input_columns="image")
  156. except RuntimeError as e:
  157. logger.info("Got an exception in DE: {}".format(str(e)))
  158. assert "The shape" in str(e)
  159. def test_invert_md5_py():
  160. """
  161. Test Invert python op with md5 check
  162. """
  163. logger.info("Test Invert python op with md5 check")
  164. # Generate dataset
  165. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  166. transforms_invert = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  167. F.Invert(),
  168. F.ToTensor()])
  169. data = data_set.map(operations=transforms_invert, input_columns="image")
  170. # Compare with expected md5 from images
  171. filename = "invert_01_result_py.npz"
  172. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  173. def test_invert_md5_c():
  174. """
  175. Test Invert cpp op with md5 check
  176. """
  177. logger.info("Test Invert cpp op with md5 check")
  178. # Generate dataset
  179. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  180. transforms_invert = [C.Decode(),
  181. C.Resize(size=[224, 224]),
  182. C.Invert(),
  183. F.ToTensor()]
  184. data = data_set.map(operations=transforms_invert, input_columns="image")
  185. # Compare with expected md5 from images
  186. filename = "invert_01_result_c.npz"
  187. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  188. if __name__ == "__main__":
  189. test_invert_py(plot=False)
  190. test_invert_c(plot=False)
  191. test_invert_py_c(plot=False)
  192. test_invert_one_channel()
  193. test_invert_md5_py()
  194. test_invert_md5_c()