You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 5.7 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # less required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ######################## train YOLOv3 example ########################
  17. train YOLOv3 and get network model files(.ckpt) :
  18. python train.py --image_dir dataset/coco/coco/train2017 --anno_path dataset/coco/train_coco.txt
  19. """
  20. import argparse
  21. import numpy as np
  22. import mindspore.nn as nn
  23. from mindspore import context, Tensor
  24. from mindspore.common.initializer import initializer
  25. from mindspore.communication.management import init
  26. from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, LossMonitor, TimeMonitor
  27. from mindspore.train import Model, ParallelMode
  28. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  29. from mindspore.model_zoo.yolov3 import yolov3_resnet18, YoloWithLossCell, TrainingWrapper
  30. from dataset import create_yolo_dataset
  31. from config import ConfigYOLOV3ResNet18
  32. def get_lr(learning_rate, start_step, global_step, decay_step, decay_rate, steps=False):
  33. """Set learning rate"""
  34. lr_each_step = []
  35. lr = learning_rate
  36. for i in range(global_step):
  37. if steps:
  38. lr_each_step.append(lr * (decay_rate ** (i // decay_step)))
  39. else:
  40. lr_each_step.append(lr * (decay_rate ** (i / decay_step)))
  41. lr_each_step = np.array(lr_each_step).astype(np.float32)
  42. lr_each_step = lr_each_step[start_step:]
  43. return lr_each_step
  44. def init_net_param(net, init='ones'):
  45. """Init the parameters in net."""
  46. params = net.trainable_params()
  47. for p in params:
  48. if isinstance(p.data, Tensor) and 'beta' not in p.name and 'gamma' not in p.name and 'bias' not in p.name:
  49. p.set_parameter_data(initializer(init, p.data.shape(), p.data.dtype()))
  50. if __name__ == '__main__':
  51. parser = argparse.ArgumentParser(description="YOLOv3")
  52. parser.add_argument("--distribute", type=bool, default=False, help="Run distribute, default is false.")
  53. parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
  54. parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default is 1.")
  55. parser.add_argument("--mode", type=str, default="graph", help="Run graph mode or feed mode, default is graph")
  56. parser.add_argument("--epoch_size", type=int, default=10, help="Epoch size, default is 10")
  57. parser.add_argument("--batch_size", type=int, default=32, help="Batch size, default is 32.")
  58. parser.add_argument("--checkpoint_path", type=str, default="", help="Checkpoint file path")
  59. parser.add_argument("--save_checkpoint_epochs", type=int, default=5, help="Save checkpoint epochs, default is 5.")
  60. parser.add_argument("--loss_scale", type=int, default=1024, help="Loss scale, default is 1024.")
  61. parser.add_argument("--image_dir", type=str, required=True, help="Dataset image dir.")
  62. parser.add_argument("--anno_path", type=str, required=True, help="Dataset anno path.")
  63. args_opt = parser.parse_args()
  64. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
  65. context.set_context(enable_task_sink=True, enable_loop_sink=True, enable_mem_reuse=True)
  66. if args_opt.distribute:
  67. device_num = args_opt.device_num
  68. context.reset_auto_parallel_context()
  69. context.set_context(enable_hccl=True)
  70. context.set_auto_parallel_context(parallel_mode=ParallelMode.DATA_PARALLEL, mirror_mean=True,
  71. device_num=device_num)
  72. init()
  73. rank = args_opt.device_id
  74. else:
  75. context.set_context(enable_hccl=False)
  76. rank = 0
  77. device_num = 1
  78. loss_scale = float(args_opt.loss_scale)
  79. dataset = create_yolo_dataset(args_opt.image_dir, args_opt.anno_path, repeat_num=args_opt.epoch_size,
  80. batch_size=args_opt.batch_size, device_num=device_num, rank=rank)
  81. dataset_size = dataset.get_dataset_size()
  82. net = yolov3_resnet18(ConfigYOLOV3ResNet18())
  83. net = YoloWithLossCell(net, ConfigYOLOV3ResNet18())
  84. init_net_param(net, "XavierUniform")
  85. # checkpoint
  86. ckpt_config = CheckpointConfig(save_checkpoint_steps=dataset_size * args_opt.save_checkpoint_epochs)
  87. ckpoint_cb = ModelCheckpoint(prefix="yolov3", directory=None, config=ckpt_config)
  88. if args_opt.checkpoint_path != "":
  89. param_dict = load_checkpoint(args_opt.checkpoint_path)
  90. load_param_into_net(net, param_dict)
  91. lr = Tensor(get_lr(learning_rate=0.001, start_step=0, global_step=args_opt.epoch_size * dataset_size,
  92. decay_step=1000, decay_rate=0.95))
  93. opt = nn.Adam(filter(lambda x: x.requires_grad, net.get_parameters()), lr, loss_scale=loss_scale)
  94. net = TrainingWrapper(net, opt, loss_scale)
  95. callback = [TimeMonitor(data_size=dataset_size), LossMonitor(), ckpoint_cb]
  96. model = Model(net)
  97. dataset_sink_mode = False
  98. if args_opt.mode == "graph":
  99. dataset_sink_mode = True
  100. print("Start train YOLOv3.")
  101. model.train(args_opt.epoch_size, dataset, callbacks=callback, dataset_sink_mode=dataset_sink_mode)

MindSpore is a new open source deep learning training/inference framework that could be used for mobile, edge and cloud scenarios.