You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_invert.py 9.7 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271
  1. # Copyright 2020-2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing Invert op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset as ds
  20. import mindspore.dataset.transforms.py_transforms
  21. import mindspore.dataset.vision.py_transforms as F
  22. import mindspore.dataset.vision.c_transforms as C
  23. from mindspore import log as logger
  24. from util import visualize_list, save_and_check_md5, diff_mse
  25. DATA_DIR = "../data/dataset/testImageNetData/train/"
  26. GENERATE_GOLDEN = False
  27. def test_invert_callable():
  28. """
  29. Test Invert is callable
  30. """
  31. logger.info("Test Invert callable")
  32. img = np.fromfile("../data/dataset/apple.jpg", dtype=np.uint8)
  33. logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
  34. img = C.Decode()(img)
  35. img = C.Invert()(img)
  36. logger.info("Image.type: {}, Image.shape: {}".format(type(img), img.shape))
  37. assert img.shape == (2268, 4032, 3)
  38. def test_invert_py(plot=False):
  39. """
  40. Test Invert python op
  41. """
  42. logger.info("Test Invert Python op")
  43. # Original Images
  44. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  45. transforms_original = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  46. F.Resize((224, 224)),
  47. F.ToTensor()])
  48. ds_original = data_set.map(operations=transforms_original, input_columns="image")
  49. ds_original = ds_original.batch(512)
  50. for idx, (image, _) in enumerate(ds_original):
  51. if idx == 0:
  52. images_original = np.transpose(image.asnumpy(), (0, 2, 3, 1))
  53. else:
  54. images_original = np.append(images_original,
  55. np.transpose(image.asnumpy(), (0, 2, 3, 1)),
  56. axis=0)
  57. # Color Inverted Images
  58. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  59. transforms_invert = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  60. F.Resize((224, 224)),
  61. F.Invert(),
  62. F.ToTensor()])
  63. ds_invert = data_set.map(operations=transforms_invert, input_columns="image")
  64. ds_invert = ds_invert.batch(512)
  65. for idx, (image, _) in enumerate(ds_invert):
  66. if idx == 0:
  67. images_invert = np.transpose(image.asnumpy(), (0, 2, 3, 1))
  68. else:
  69. images_invert = np.append(images_invert,
  70. np.transpose(image.asnumpy(), (0, 2, 3, 1)),
  71. axis=0)
  72. num_samples = images_original.shape[0]
  73. mse = np.zeros(num_samples)
  74. for i in range(num_samples):
  75. mse[i] = np.mean((images_invert[i] - images_original[i]) ** 2)
  76. logger.info("MSE= {}".format(str(np.mean(mse))))
  77. if plot:
  78. visualize_list(images_original, images_invert)
  79. def test_invert_c(plot=False):
  80. """
  81. Test Invert Cpp op
  82. """
  83. logger.info("Test Invert cpp op")
  84. # Original Images
  85. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  86. transforms_original = [C.Decode(), C.Resize(size=[224, 224])]
  87. ds_original = data_set.map(operations=transforms_original, input_columns="image")
  88. ds_original = ds_original.batch(512)
  89. for idx, (image, _) in enumerate(ds_original):
  90. if idx == 0:
  91. images_original = image.asnumpy()
  92. else:
  93. images_original = np.append(images_original,
  94. image.asnumpy(),
  95. axis=0)
  96. # Invert Images
  97. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  98. transform_invert = [C.Decode(), C.Resize(size=[224, 224]),
  99. C.Invert()]
  100. ds_invert = data_set.map(operations=transform_invert, input_columns="image")
  101. ds_invert = ds_invert.batch(512)
  102. for idx, (image, _) in enumerate(ds_invert):
  103. if idx == 0:
  104. images_invert = image.asnumpy()
  105. else:
  106. images_invert = np.append(images_invert,
  107. image.asnumpy(),
  108. axis=0)
  109. if plot:
  110. visualize_list(images_original, images_invert)
  111. num_samples = images_original.shape[0]
  112. mse = np.zeros(num_samples)
  113. for i in range(num_samples):
  114. mse[i] = diff_mse(images_invert[i], images_original[i])
  115. logger.info("MSE= {}".format(str(np.mean(mse))))
  116. def test_invert_py_c(plot=False):
  117. """
  118. Test Invert Cpp op and python op
  119. """
  120. logger.info("Test Invert cpp and python op")
  121. # Invert Images in cpp
  122. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  123. data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
  124. ds_c_invert = data_set.map(operations=C.Invert(), input_columns="image")
  125. ds_c_invert = ds_c_invert.batch(512)
  126. for idx, (image, _) in enumerate(ds_c_invert):
  127. if idx == 0:
  128. images_c_invert = image.asnumpy()
  129. else:
  130. images_c_invert = np.append(images_c_invert,
  131. image.asnumpy(),
  132. axis=0)
  133. # invert images in python
  134. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  135. data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224))], input_columns=["image"])
  136. transforms_p_invert = mindspore.dataset.transforms.py_transforms.Compose([lambda img: img.astype(np.uint8),
  137. F.ToPIL(),
  138. F.Invert(),
  139. np.array])
  140. ds_p_invert = data_set.map(operations=transforms_p_invert, input_columns="image")
  141. ds_p_invert = ds_p_invert.batch(512)
  142. for idx, (image, _) in enumerate(ds_p_invert):
  143. if idx == 0:
  144. images_p_invert = image.asnumpy()
  145. else:
  146. images_p_invert = np.append(images_p_invert,
  147. image.asnumpy(),
  148. axis=0)
  149. num_samples = images_c_invert.shape[0]
  150. mse = np.zeros(num_samples)
  151. for i in range(num_samples):
  152. mse[i] = diff_mse(images_p_invert[i], images_c_invert[i])
  153. logger.info("MSE= {}".format(str(np.mean(mse))))
  154. if plot:
  155. visualize_list(images_c_invert, images_p_invert, visualize_mode=2)
  156. def test_invert_one_channel():
  157. """
  158. Test Invert cpp op with one channel image
  159. """
  160. logger.info("Test Invert C Op With One Channel Images")
  161. c_op = C.Invert()
  162. try:
  163. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  164. data_set = data_set.map(operations=[C.Decode(), C.Resize((224, 224)),
  165. lambda img: np.array(img[:, :, 0])], input_columns=["image"])
  166. data_set.map(operations=c_op, input_columns="image")
  167. except RuntimeError as e:
  168. logger.info("Got an exception in DE: {}".format(str(e)))
  169. assert "The shape" in str(e)
  170. def test_invert_md5_py():
  171. """
  172. Test Invert python op with md5 check
  173. """
  174. logger.info("Test Invert python op with md5 check")
  175. # Generate dataset
  176. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  177. transforms_invert = mindspore.dataset.transforms.py_transforms.Compose([F.Decode(),
  178. F.Invert(),
  179. F.ToTensor()])
  180. data = data_set.map(operations=transforms_invert, input_columns="image")
  181. # Compare with expected md5 from images
  182. filename = "invert_01_result_py.npz"
  183. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  184. def test_invert_md5_c():
  185. """
  186. Test Invert cpp op with md5 check
  187. """
  188. logger.info("Test Invert cpp op with md5 check")
  189. # Generate dataset
  190. data_set = ds.ImageFolderDataset(dataset_dir=DATA_DIR, shuffle=False)
  191. transforms_invert = [C.Decode(),
  192. C.Resize(size=[224, 224]),
  193. C.Invert(),
  194. F.ToTensor()]
  195. data = data_set.map(operations=transforms_invert, input_columns="image")
  196. # Compare with expected md5 from images
  197. filename = "invert_01_result_c.npz"
  198. save_and_check_md5(data, filename, generate_golden=GENERATE_GOLDEN)
  199. if __name__ == "__main__":
  200. test_invert_callable()
  201. test_invert_py(plot=False)
  202. test_invert_c(plot=False)
  203. test_invert_py_c(plot=False)
  204. test_invert_one_channel()
  205. test_invert_md5_py()
  206. test_invert_md5_c()