You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

test_pair_truncate.py 3.1 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ==============================================================================
  15. """
  16. Testing Mask op in DE
  17. """
  18. import numpy as np
  19. import mindspore.dataset as ds
  20. import mindspore.dataset.text as text
  21. def compare(in1, in2, length, out1, out2):
  22. data = ds.NumpySlicesDataset({"s1": [in1], "s2": [in2]})
  23. data = data.map(operations=text.TruncateSequencePair(length), input_columns=["s1", "s2"])
  24. data = data.map(input_columns=["s1", "s2"], operations=text.TruncateSequencePair(length))
  25. for d in data.create_dict_iterator(num_epochs=1, output_numpy=True):
  26. np.testing.assert_array_equal(out1, d["s1"])
  27. np.testing.assert_array_equal(out2, d["s2"])
  28. def test_callable():
  29. op = text.TruncateSequencePair(3)
  30. data = [["1", "2", "3"], ["4", "5"]]
  31. result_text = op(*data)
  32. column1, column2 = op(["1", "2", "3"], ["4", "5"])
  33. assert np.array_equal(result_text[0], ['1', '2'])
  34. assert np.array_equal(result_text[1], ['4'])
  35. assert np.array_equal(column1, ['1', '2'])
  36. assert np.array_equal(column2, ['4'])
  37. def test_basics():
  38. compare(in1=[1, 2, 3], in2=[4, 5], length=4, out1=[1, 2], out2=[4, 5])
  39. compare(in1=[1, 2], in2=[4, 5], length=4, out1=[1, 2], out2=[4, 5])
  40. compare(in1=[1], in2=[4], length=4, out1=[1], out2=[4])
  41. compare(in1=[1, 2, 3, 4], in2=[5], length=4, out1=[1, 2, 3], out2=[5])
  42. compare(in1=[1, 2, 3, 4], in2=[5, 6, 7, 8], length=4, out1=[1, 2], out2=[5, 6])
  43. def test_basics_odd():
  44. compare(in1=[1, 2, 3], in2=[4, 5], length=3, out1=[1, 2], out2=[4])
  45. compare(in1=[1, 2], in2=[4, 5], length=3, out1=[1, 2], out2=[4])
  46. compare(in1=[1], in2=[4], length=5, out1=[1], out2=[4])
  47. compare(in1=[1, 2, 3, 4], in2=[5], length=3, out1=[1, 2], out2=[5])
  48. compare(in1=[1, 2, 3, 4], in2=[5, 6, 7, 8], length=3, out1=[1, 2], out2=[5])
  49. def test_basics_str():
  50. compare(in1=[b"1", b"2", b"3"], in2=[4, 5], length=4, out1=[b"1", b"2"], out2=[4, 5])
  51. compare(in1=[b"1", b"2"], in2=[b"4", b"5"], length=4, out1=[b"1", b"2"], out2=[b"4", b"5"])
  52. compare(in1=[b"1"], in2=[4], length=4, out1=[b"1"], out2=[4])
  53. compare(in1=[b"1", b"2", b"3", b"4"], in2=[b"5"], length=4, out1=[b"1", b"2", b"3"], out2=[b"5"])
  54. compare(in1=[b"1", b"2", b"3", b"4"], in2=[5, 6, 7, 8], length=4, out1=[b"1", b"2"], out2=[5, 6])
  55. def test_exceptions():
  56. compare(in1=[1, 2, 3, 4], in2=[5, 6, 7, 8], length=1, out1=[1], out2=[])
  57. if __name__ == "__main__":
  58. test_callable()
  59. test_basics()
  60. test_basics_odd()
  61. test_basics_str()
  62. test_exceptions()