You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 7.2 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train squeezenet."""
  16. import os
  17. import argparse
  18. from mindspore import context
  19. from mindspore import Tensor
  20. from mindspore.nn.optim.momentum import Momentum
  21. from mindspore.train.model import Model
  22. from mindspore.context import ParallelMode
  23. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  24. from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
  25. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  26. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  27. from mindspore.communication.management import init, get_rank, get_group_size
  28. from mindspore.common import set_seed
  29. from src.lr_generator import get_lr
  30. from src.CrossEntropySmooth import CrossEntropySmooth
  31. parser = argparse.ArgumentParser(description='Image classification')
  32. parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'],
  33. help='Model.')
  34. parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.')
  35. parser.add_argument('--run_distribute', type=bool, default=False, help='Run distribute')
  36. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  37. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  38. parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
  39. parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
  40. args_opt = parser.parse_args()
  41. set_seed(1)
  42. if args_opt.net == "squeezenet":
  43. from src.squeezenet import SqueezeNet as squeezenet
  44. if args_opt.dataset == "cifar10":
  45. from src.config import config1 as config
  46. from src.dataset import create_dataset_cifar as create_dataset
  47. else:
  48. from src.config import config2 as config
  49. from src.dataset import create_dataset_imagenet as create_dataset
  50. else:
  51. from src.squeezenet import SqueezeNet_Residual as squeezenet
  52. if args_opt.dataset == "cifar10":
  53. from src.config import config3 as config
  54. from src.dataset import create_dataset_cifar as create_dataset
  55. else:
  56. from src.config import config4 as config
  57. from src.dataset import create_dataset_imagenet as create_dataset
  58. if __name__ == '__main__':
  59. target = args_opt.device_target
  60. ckpt_save_dir = config.save_checkpoint_path
  61. # init context
  62. context.set_context(mode=context.GRAPH_MODE,
  63. device_target=target)
  64. if args_opt.run_distribute:
  65. if target == "Ascend":
  66. device_id = int(os.getenv('DEVICE_ID'))
  67. context.set_context(device_id=device_id,
  68. enable_auto_mixed_precision=True)
  69. context.set_auto_parallel_context(
  70. device_num=args_opt.device_num,
  71. parallel_mode=ParallelMode.DATA_PARALLEL,
  72. gradients_mean=True)
  73. init()
  74. # GPU target
  75. else:
  76. init()
  77. context.set_auto_parallel_context(
  78. device_num=get_group_size(),
  79. parallel_mode=ParallelMode.DATA_PARALLEL,
  80. gradients_mean=True)
  81. ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(
  82. get_rank()) + "/"
  83. # create dataset
  84. dataset = create_dataset(dataset_path=args_opt.dataset_path,
  85. do_train=True,
  86. repeat_num=1,
  87. batch_size=config.batch_size,
  88. target=target)
  89. step_size = dataset.get_dataset_size()
  90. # define net
  91. net = squeezenet(num_classes=config.class_num)
  92. # load checkpoint
  93. if args_opt.pre_trained:
  94. param_dict = load_checkpoint(args_opt.pre_trained)
  95. load_param_into_net(net, param_dict)
  96. # init lr
  97. lr = get_lr(lr_init=config.lr_init,
  98. lr_end=config.lr_end,
  99. lr_max=config.lr_max,
  100. total_epochs=config.epoch_size,
  101. warmup_epochs=config.warmup_epochs,
  102. pretrain_epochs=config.pretrain_epoch_size,
  103. steps_per_epoch=step_size,
  104. lr_decay_mode=config.lr_decay_mode)
  105. lr = Tensor(lr)
  106. # define loss
  107. if args_opt.dataset == "imagenet":
  108. if not config.use_label_smooth:
  109. config.label_smooth_factor = 0.0
  110. loss = CrossEntropySmooth(sparse=True,
  111. reduction='mean',
  112. smooth_factor=config.label_smooth_factor,
  113. num_classes=config.class_num)
  114. else:
  115. loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
  116. # define opt, model
  117. if target == "Ascend":
  118. loss_scale = FixedLossScaleManager(config.loss_scale,
  119. drop_overflow_update=False)
  120. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
  121. lr,
  122. config.momentum,
  123. config.weight_decay,
  124. config.loss_scale,
  125. use_nesterov=True)
  126. model = Model(net,
  127. loss_fn=loss,
  128. optimizer=opt,
  129. loss_scale_manager=loss_scale,
  130. metrics={'acc'},
  131. amp_level="O2",
  132. keep_batchnorm_fp32=False)
  133. else:
  134. # GPU target
  135. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()),
  136. lr,
  137. config.momentum,
  138. config.weight_decay,
  139. use_nesterov=True)
  140. model = Model(net, loss_fn=loss, optimizer=opt, metrics={'acc'})
  141. # define callbacks
  142. time_cb = TimeMonitor(data_size=step_size)
  143. loss_cb = LossMonitor()
  144. cb = [time_cb, loss_cb]
  145. if config.save_checkpoint:
  146. config_ck = CheckpointConfig(
  147. save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  148. keep_checkpoint_max=config.keep_checkpoint_max)
  149. ckpt_cb = ModelCheckpoint(prefix=args_opt.net + '_' + args_opt.dataset,
  150. directory=ckpt_save_dir,
  151. config=config_ck)
  152. cb += [ckpt_cb]
  153. # train model
  154. model.train(config.epoch_size - config.pretrain_epoch_size,
  155. dataset,
  156. callbacks=cb)