You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ##############export checkpoint file into air and onnx models#################
  17. python export.py --net squeezenet --dataset cifar10 --checkpoint_path squeezenet_cifar10-120_1562.ckpt
  18. """
  19. import argparse
  20. import numpy as np
  21. from mindspore import Tensor
  22. from mindspore.train.serialization import load_checkpoint, load_param_into_net, export
  23. if __name__ == '__main__':
  24. parser = argparse.ArgumentParser(description='Image classification')
  25. parser.add_argument('--net', type=str, default='squeezenet', choices=['squeezenet', 'squeezenet_residual'],
  26. help='Model.')
  27. parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10', 'imagenet'], help='Dataset.')
  28. parser.add_argument('--checkpoint_path', type=str, default=None, help='Checkpoint file path')
  29. args_opt = parser.parse_args()
  30. if args_opt.net == "squeezenet":
  31. from src.squeezenet import SqueezeNet as squeezenet
  32. else:
  33. from src.squeezenet import SqueezeNet_Residual as squeezenet
  34. if args_opt.dataset == "cifar10":
  35. num_classes = 10
  36. else:
  37. num_classes = 1000
  38. onnx_filename = args_opt.net + '_' + args_opt.dataset
  39. air_filename = args_opt.net + '_' + args_opt.dataset
  40. net = squeezenet(num_classes=num_classes)
  41. assert args_opt.checkpoint_path is not None, "checkpoint_path is None."
  42. param_dict = load_checkpoint(args_opt.checkpoint_path)
  43. load_param_into_net(net, param_dict)
  44. input_arr = Tensor(np.zeros([1, 3, 227, 227], np.float32))
  45. export(net, input_arr, file_name=onnx_filename, file_format="ONNX")
  46. export(net, input_arr, file_name=air_filename, file_format="AIR")