|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Cycle GAN train."""
-
- import mindspore.nn as nn
- from mindspore.common import set_seed
-
- from src.models import get_generator, get_discriminator, Generator, TrainOneStepG, TrainOneStepD, \
- DiscriminatorLoss, GeneratorLoss
- from src.utils import get_lr, get_args, Reporter, ImagePool, load_ckpt
- from src.dataset import create_dataset
-
- set_seed(1)
-
- def train():
- """Train function."""
- args = get_args("train")
- if args.need_profiler:
- from mindspore.profiler.profiling import Profiler
- profiler = Profiler(output_path=args.outputs_dir, is_detail=True, is_show_op_path=True)
- ds = create_dataset(args)
- G_A = get_generator(args)
- G_B = get_generator(args)
- D_A = get_discriminator(args)
- D_B = get_discriminator(args)
- load_ckpt(args, G_A, G_B, D_A, D_B)
- imgae_pool_A = ImagePool(args.pool_size)
- imgae_pool_B = ImagePool(args.pool_size)
- generator = Generator(G_A, G_B, args.lambda_idt > 0)
-
- loss_D = DiscriminatorLoss(args, D_A, D_B)
- loss_G = GeneratorLoss(args, generator, D_A, D_B)
- optimizer_G = nn.Adam(generator.trainable_params(), get_lr(args), beta1=args.beta1)
- optimizer_D = nn.Adam(loss_D.trainable_params(), get_lr(args), beta1=args.beta1)
-
- net_G = TrainOneStepG(loss_G, generator, optimizer_G)
- net_D = TrainOneStepD(loss_D, optimizer_D)
-
- data_loader = ds.create_dict_iterator()
- reporter = Reporter(args)
- reporter.info('==========start training===============')
- for _ in range(args.max_epoch):
- reporter.epoch_start()
- for data in data_loader:
- img_A = data["image_A"]
- img_B = data["image_B"]
- res_G = net_G(img_A, img_B)
- fake_A = res_G[0]
- fake_B = res_G[1]
- res_D = net_D(img_A, img_B, imgae_pool_A.query(fake_A), imgae_pool_B.query(fake_B))
- reporter.step_end(res_G, res_D)
- reporter.visualizer(img_A, img_B, fake_A, fake_B)
- reporter.epoch_end(net_G)
- if args.need_profiler:
- profiler.analyse()
- break
-
- reporter.info('==========end training===============')
-
-
- if __name__ == "__main__":
- train()
|