|
1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556 |
- # Copyright 2021 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
- """Numpy version of euclidean distance, etc."""
- import numpy as np
- from utils.metric import cmc, mean_ap
-
-
- def normalize(nparray, order=2, axis=0):
- """Normalize a N-D numpy array along the specified axis."""
- norm = np.linalg.norm(nparray, ord=order, axis=axis, keepdims=True)
- return nparray / (norm + np.finfo(np.float32).eps)
-
-
- def compute_dist(array1, array2, dis_type='euclidean'):
- """Compute the euclidean or cosine distance of all pairs.
- Args:
- array1: numpy array with shape [m1, n]
- array2: numpy array with shape [m2, n]
- type:
- one of ['cosine', 'euclidean']
- Returns:
- numpy array with shape [m1, m2]
- """
- assert dis_type in ['cosine', 'euclidean']
- if dis_type == 'cosine':
- array1 = normalize(array1, axis=1)
- array2 = normalize(array2, axis=1)
- dist = np.matmul(array1, array2.T)
- return -1*dist
-
- # shape [m1, 1]
- square1 = np.sum(np.square(array1), axis=1)[..., np.newaxis]
- # shape [1, m2]
- square2 = np.sum(np.square(array2), axis=1)[np.newaxis, ...]
- squared_dist = - 2 * np.matmul(array1, array2.T) + square1 + square2
- squared_dist[squared_dist < 0] = 0
- dist = np.sqrt(squared_dist)
- return dist
-
-
- def compute_score(dist_mat, query_ids, gallery_ids):
- mAP = mean_ap(distmat=dist_mat, query_ids=query_ids, gallery_ids=gallery_ids)
- cmc_scores, _ = cmc(distmat=dist_mat, query_ids=query_ids, gallery_ids=gallery_ids, topk=10)
- return mAP, cmc_scores
|