You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

eval.py 4.1 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """Inference Interface"""
  16. import sys
  17. import argparse
  18. from mindspore.train.model import Model
  19. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  20. from mindspore.nn import Loss, Top1CategoricalAccuracy, Top5CategoricalAccuracy
  21. from mindspore import context
  22. from mindspore import nn
  23. from src.dataset import create_dataset_cifar10
  24. from src.utils import count_params
  25. from src.hournasnet import hournasnet
  26. from easydict import EasyDict as edict
  27. parser = argparse.ArgumentParser(description='Evaluation')
  28. parser.add_argument('--data_path', type=str, default='/home/workspace/mindspore_dataset/',
  29. metavar='DIR', help='path to dataset')
  30. parser.add_argument('--model', default='hournas_f_c10', type=str, metavar='MODEL',
  31. help='Name of model to train (default: "tinynet_c"')
  32. parser.add_argument('--num-classes', type=int, default=10, metavar='N',
  33. help='number of label classes (default: 10)')
  34. parser.add_argument('-b', '--batch-size', type=int, default=256, metavar='N',
  35. help='input batch size for training (default: 256)')
  36. parser.add_argument('-j', '--workers', type=int, default=4, metavar='N',
  37. help='how many training processes to use (default: 4)')
  38. parser.add_argument('--ckpt', type=str, default='./ms_hournas_f_c10.ckpt',
  39. help='model checkpoint to load')
  40. parser.add_argument('--GPU', action='store_true', default=True,
  41. help='Use GPU for training (default: True)')
  42. parser.add_argument('--dataset_sink', action='store_true', default=True)
  43. parser.add_argument('--image-size', type=int, default=32, metavar='N',
  44. help='input image size (default: 32)')
  45. def main():
  46. """Main entrance for training"""
  47. args = parser.parse_args()
  48. print(sys.argv)
  49. #context.set_context(mode=context.GRAPH_MODE)
  50. context.set_context(mode=context.PYNATIVE_MODE)
  51. if args.GPU:
  52. context.set_context(device_target='GPU')
  53. # parse model argument
  54. assert args.model.startswith(
  55. "hournas"), "Only Tinynet models are supported."
  56. #_, sub_name = args.model.split("_")
  57. net = hournasnet(args.model,
  58. num_classes=args.num_classes,
  59. drop_rate=0.0,
  60. drop_connect_rate=0.0,
  61. global_pool="avg",
  62. bn_tf=False,
  63. bn_momentum=None,
  64. bn_eps=None)
  65. print(net)
  66. print("Total number of parameters:", count_params(net))
  67. cfg = edict({'image_height': args.image_size, 'image_width': args.image_size,})
  68. cfg.batch_size = args.batch_size
  69. print(cfg)
  70. #input_size = net.default_cfg['input_size'][1]
  71. val_data_url = args.data_path #os.path.join(args.data_path, 'val')
  72. val_dataset = create_dataset_cifar10(val_data_url, repeat_num=1, training=False, cifar_cfg=cfg)
  73. loss = nn.SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
  74. eval_metrics = {'Validation-Loss': Loss(),
  75. 'Top1-Acc': Top1CategoricalAccuracy(),
  76. 'Top5-Acc': Top5CategoricalAccuracy()}
  77. ckpt = load_checkpoint(args.ckpt)
  78. load_param_into_net(net, ckpt)
  79. net.set_train(False)
  80. model = Model(net, loss, metrics=eval_metrics)
  81. metrics = model.eval(val_dataset, dataset_sink_mode=False)
  82. print(metrics)
  83. if __name__ == '__main__':
  84. main()