You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 6.5 kB

4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train script"""
  16. import os
  17. import time
  18. import argparse
  19. import ast
  20. from mindspore.context import ParallelMode
  21. from mindspore import context
  22. from mindspore.communication.management import init
  23. from mindspore.train.callback import Callback, CheckpointConfig, ModelCheckpoint, TimeMonitor
  24. from mindspore.train import Model
  25. from mindspore.common import set_seed
  26. from mindspore.train.loss_scale_manager import DynamicLossScaleManager
  27. from mindspore.nn.optim import Adam
  28. from src.config import config
  29. from src.seq2seq import Seq2Seq
  30. from src.gru_for_train import GRUWithLossCell, GRUTrainOneStepWithLossScaleCell
  31. from src.dataset import create_gru_dataset
  32. from src.lr_schedule import dynamic_lr
  33. set_seed(1)
  34. parser = argparse.ArgumentParser(description="GRU training")
  35. parser.add_argument("--run_distribute", type=ast.literal_eval, default=False, help="Run distribute, default: false.")
  36. parser.add_argument("--dataset_path", type=str, default=None, help="Dataset path")
  37. parser.add_argument("--pre_trained", type=str, default=None, help="Pretrained file path.")
  38. parser.add_argument("--device_id", type=int, default=0, help="Device id, default: 0.")
  39. parser.add_argument("--device_num", type=int, default=1, help="Use device nums, default: 1.")
  40. parser.add_argument("--rank_id", type=int, default=0, help="Rank id, default: 0.")
  41. parser.add_argument('--ckpt_path', type=str, default='outputs/', help='Checkpoint save location. Default: outputs/')
  42. parser.add_argument('--outputs_dir', type=str, default='./', help='Checkpoint save location. Default: outputs/')
  43. args = parser.parse_args()
  44. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args.device_id, save_graphs=False)
  45. def get_ms_timestamp():
  46. t = time.time()
  47. return int(round(t * 1000))
  48. time_stamp_init = False
  49. time_stamp_first = 0
  50. class LossCallBack(Callback):
  51. """
  52. Monitor the loss in training.
  53. If the loss is NAN or INF terminating training.
  54. Note:
  55. If per_print_times is 0 do not print loss.
  56. Args:
  57. per_print_times (int): Print loss every times. Default: 1.
  58. """
  59. def __init__(self, per_print_times=1, rank_id=0):
  60. super(LossCallBack, self).__init__()
  61. if not isinstance(per_print_times, int) or per_print_times < 0:
  62. raise ValueError("print_step must be int and >= 0.")
  63. self._per_print_times = per_print_times
  64. self.rank_id = rank_id
  65. global time_stamp_init, time_stamp_first
  66. if not time_stamp_init:
  67. time_stamp_first = get_ms_timestamp()
  68. time_stamp_init = True
  69. def step_end(self, run_context):
  70. """Monitor the loss in training."""
  71. global time_stamp_first
  72. time_stamp_current = get_ms_timestamp()
  73. cb_params = run_context.original_args()
  74. print("time: {}, epoch: {}, step: {}, outputs are {}".format(time_stamp_current - time_stamp_first,
  75. cb_params.cur_epoch_num,
  76. cb_params.cur_step_num,
  77. str(cb_params.net_outputs)))
  78. with open("./loss_{}.log".format(self.rank_id), "a+") as f:
  79. f.write("time: {}, epoch: {}, step: {}, loss: {}, overflow: {}, loss_scale: {}".format(
  80. time_stamp_current - time_stamp_first,
  81. cb_params.cur_epoch_num,
  82. cb_params.cur_step_num,
  83. str(cb_params.net_outputs[0].asnumpy()),
  84. str(cb_params.net_outputs[1].asnumpy()),
  85. str(cb_params.net_outputs[2].asnumpy())))
  86. f.write('\n')
  87. if __name__ == '__main__':
  88. if args.run_distribute:
  89. rank = args.rank_id
  90. device_num = args.device_num
  91. context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  92. gradients_mean=True)
  93. init()
  94. else:
  95. rank = 0
  96. device_num = 1
  97. mindrecord_file = args.dataset_path
  98. if not os.path.exists(mindrecord_file):
  99. print("dataset file {} not exists, please check!".format(mindrecord_file))
  100. raise ValueError(mindrecord_file)
  101. dataset = create_gru_dataset(epoch_count=config.num_epochs, batch_size=config.batch_size,
  102. dataset_path=mindrecord_file, rank_size=device_num, rank_id=rank)
  103. dataset_size = dataset.get_dataset_size()
  104. print("dataset size is {}".format(dataset_size))
  105. network = Seq2Seq(config)
  106. network = GRUWithLossCell(network)
  107. lr = dynamic_lr(config, dataset_size)
  108. opt = Adam(network.trainable_params(), learning_rate=lr)
  109. scale_manager = DynamicLossScaleManager(init_loss_scale=config.init_loss_scale_value,
  110. scale_factor=config.scale_factor,
  111. scale_window=config.scale_window)
  112. update_cell = scale_manager.get_update_cell()
  113. netwithgrads = GRUTrainOneStepWithLossScaleCell(network, opt, update_cell)
  114. time_cb = TimeMonitor(data_size=dataset_size)
  115. loss_cb = LossCallBack(rank_id=rank)
  116. cb = [time_cb, loss_cb]
  117. #Save Checkpoint
  118. if config.save_checkpoint:
  119. ckpt_config = CheckpointConfig(save_checkpoint_steps=config.ckpt_epoch*dataset_size,
  120. keep_checkpoint_max=config.keep_checkpoint_max)
  121. save_ckpt_path = os.path.join(args.outputs_dir, 'ckpt_'+str(args.rank_id)+'/')
  122. ckpt_cb = ModelCheckpoint(config=ckpt_config,
  123. directory=save_ckpt_path,
  124. prefix='{}'.format(args.rank_id))
  125. cb += [ckpt_cb]
  126. netwithgrads.set_train(True)
  127. model = Model(netwithgrads)
  128. model.train(config.num_epochs, dataset, callbacks=cb, dataset_sink_mode=True)