|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217 |
- # Copyright 2020 Huawei Technologies Co., Ltd
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- # ============================================================================
-
- '''
- Bert finetune and evaluation script.
- '''
-
- import os
- import argparse
- from src.bert_for_finetune import BertFinetuneCell, BertCLS
- from src.finetune_eval_config import optimizer_cfg, bert_net_cfg
- from src.dataset import create_classification_dataset
- from src.assessment_method import Accuracy, F1, MCC, Spearman_Correlation
- from src.utils import make_directory, LossCallBack, LoadNewestCkpt, BertLearningRate
- import mindspore.common.dtype as mstype
- from mindspore import context
- from mindspore import log as logger
- from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
- from mindspore.nn.optim import AdamWeightDecay, Lamb, Momentum
- from mindspore.train.model import Model
- from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor
- from mindspore.train.serialization import load_checkpoint, load_param_into_net
-
- _cur_dir = os.getcwd()
-
- def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoint_path="", epoch_num=1):
- """ do train """
- if load_checkpoint_path == "":
- raise ValueError("Pretrain model missed, finetune task must load pretrain model!")
- steps_per_epoch = dataset.get_dataset_size()
- # optimizer
- if optimizer_cfg.optimizer == 'AdamWeightDecay':
- lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate,
- end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate,
- warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
- decay_steps=steps_per_epoch * epoch_num,
- power=optimizer_cfg.AdamWeightDecay.power)
- params = network.trainable_params()
- decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params))
- other_params = list(filter(lambda x: not optimizer_cfg.AdamWeightDecay.decay_filter(x), params))
- group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay},
- {'params': other_params, 'weight_decay': 0.0}]
-
- optimizer = AdamWeightDecay(group_params, lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps)
- elif optimizer_cfg.optimizer == 'Lamb':
- lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.Lamb.learning_rate,
- end_learning_rate=optimizer_cfg.Lamb.end_learning_rate,
- warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
- decay_steps=steps_per_epoch * epoch_num,
- power=optimizer_cfg.Lamb.power)
- optimizer = Lamb(network.trainable_params(), learning_rate=lr_schedule)
- elif optimizer_cfg.optimizer == 'Momentum':
- optimizer = Momentum(network.trainable_params(), learning_rate=optimizer_cfg.Momentum.learning_rate,
- momentum=optimizer_cfg.Momentum.momentum)
- else:
- raise Exception("Optimizer not supported. support: [AdamWeightDecay, Lamb, Momentum]")
-
- # load checkpoint into network
- ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1)
- ckpoint_cb = ModelCheckpoint(prefix="classifier",
- directory=None if save_checkpoint_path == "" else save_checkpoint_path,
- config=ckpt_config)
- param_dict = load_checkpoint(load_checkpoint_path)
- load_param_into_net(network, param_dict)
-
- update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2**32, scale_factor=2, scale_window=1000)
- netwithgrads = BertFinetuneCell(network, optimizer=optimizer, scale_update_cell=update_cell)
- model = Model(netwithgrads)
- callbacks = [TimeMonitor(dataset.get_dataset_size()), LossCallBack(dataset.get_dataset_size()), ckpoint_cb]
- model.train(epoch_num, dataset, callbacks=callbacks)
-
- def eval_result_print(assessment_method="accuracy", callback=None):
- """ print eval result """
- if assessment_method == "accuracy":
- print("acc_num {} , total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num,
- callback.acc_num / callback.total_num))
- elif assessment_method == "f1":
- print("Precision {:.6f} ".format(callback.TP / (callback.TP + callback.FP)))
- print("Recall {:.6f} ".format(callback.TP / (callback.TP + callback.FN)))
- print("F1 {:.6f} ".format(2 * callback.TP / (2 * callback.TP + callback.FP + callback.FN)))
- elif assessment_method == "mcc":
- print("MCC {:.6f} ".format(callback.cal()))
- elif assessment_method == "spearman_correlation":
- print("Spearman Correlation is {:.6f} ".format(callback.cal()[0]))
- else:
- raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]")
-
- def do_eval(dataset=None, network=None, num_class=2, assessment_method="accuracy", load_checkpoint_path=""):
- """ do eval """
- if load_checkpoint_path == "":
- raise ValueError("Finetune model missed, evaluation task must load finetune model!")
- net_for_pretraining = network(bert_net_cfg, False, num_class)
- net_for_pretraining.set_train(False)
- param_dict = load_checkpoint(load_checkpoint_path)
- load_param_into_net(net_for_pretraining, param_dict)
- model = Model(net_for_pretraining)
-
- if assessment_method == "accuracy":
- callback = Accuracy()
- elif assessment_method == "f1":
- callback = F1(False, num_class)
- elif assessment_method == "mcc":
- callback = MCC()
- elif assessment_method == "spearman_correlation":
- callback = Spearman_Correlation()
- else:
- raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]")
-
- columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"]
- for data in dataset.create_dict_iterator(num_epochs=1):
- input_data = []
- for i in columns_list:
- input_data.append(data[i])
- input_ids, input_mask, token_type_id, label_ids = input_data
- logits = model.predict(input_ids, input_mask, token_type_id, label_ids)
- callback.update(logits, label_ids)
- print("==============================================================")
- eval_result_print(assessment_method, callback)
- print("==============================================================")
-
- def run_classifier():
- """run classifier task"""
- parser = argparse.ArgumentParser(description="run classifier")
- parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU"],
- help="Device type, default is Ascend")
- parser.add_argument("--assessment_method", type=str, default="Accuracy",
- choices=["Mcc", "Spearman_correlation", "Accuracy", "F1"],
- help="assessment_method including [Mcc, Spearman_correlation, Accuracy, F1],\
- default is Accuracy")
- parser.add_argument("--do_train", type=str, default="false", choices=["true", "false"],
- help="Enable train, default is false")
- parser.add_argument("--do_eval", type=str, default="false", choices=["true", "false"],
- help="Enable eval, default is false")
- parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
- parser.add_argument("--epoch_num", type=int, default=3, help="Epoch number, default is 3.")
- parser.add_argument("--num_class", type=int, default=2, help="The number of class, default is 2.")
- parser.add_argument("--train_data_shuffle", type=str, default="true", choices=["true", "false"],
- help="Enable train data shuffle, default is true")
- parser.add_argument("--eval_data_shuffle", type=str, default="false", choices=["true", "false"],
- help="Enable eval data shuffle, default is false")
- parser.add_argument("--train_batch_size", type=int, default=32, help="Train batch size, default is 32")
- parser.add_argument("--eval_batch_size", type=int, default=1, help="Eval batch size, default is 1")
- parser.add_argument("--save_finetune_checkpoint_path", type=str, default="", help="Save checkpoint path")
- parser.add_argument("--load_pretrain_checkpoint_path", type=str, default="", help="Load checkpoint file path")
- parser.add_argument("--load_finetune_checkpoint_path", type=str, default="", help="Load checkpoint file path")
- parser.add_argument("--train_data_file_path", type=str, default="",
- help="Data path, it is better to use absolute path")
- parser.add_argument("--eval_data_file_path", type=str, default="",
- help="Data path, it is better to use absolute path")
- parser.add_argument("--schema_file_path", type=str, default="",
- help="Schema path, it is better to use absolute path")
- args_opt = parser.parse_args()
- epoch_num = args_opt.epoch_num
- assessment_method = args_opt.assessment_method.lower()
- load_pretrain_checkpoint_path = args_opt.load_pretrain_checkpoint_path
- save_finetune_checkpoint_path = args_opt.save_finetune_checkpoint_path
- load_finetune_checkpoint_path = args_opt.load_finetune_checkpoint_path
-
- if args_opt.do_train.lower() == "false" and args_opt.do_eval.lower() == "false":
- raise ValueError("At least one of 'do_train' or 'do_eval' must be true")
- if args_opt.do_train.lower() == "true" and args_opt.train_data_file_path == "":
- raise ValueError("'train_data_file_path' must be set when do finetune task")
- if args_opt.do_eval.lower() == "true" and args_opt.eval_data_file_path == "":
- raise ValueError("'eval_data_file_path' must be set when do evaluation task")
-
- target = args_opt.device_target
- if target == "Ascend":
- context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
- elif target == "GPU":
- context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
- if bert_net_cfg.compute_type != mstype.float32:
- logger.warning('GPU only support fp32 temporarily, run with fp32.')
- bert_net_cfg.compute_type = mstype.float32
- else:
- raise Exception("Target error, GPU or Ascend is supported.")
-
- netwithloss = BertCLS(bert_net_cfg, True, num_labels=args_opt.num_class, dropout_prob=0.1,
- assessment_method=assessment_method)
-
- if args_opt.do_train.lower() == "true":
- ds = create_classification_dataset(batch_size=args_opt.train_batch_size, repeat_count=1,
- assessment_method=assessment_method,
- data_file_path=args_opt.train_data_file_path,
- schema_file_path=args_opt.schema_file_path,
- do_shuffle=(args_opt.train_data_shuffle.lower() == "true"))
- do_train(ds, netwithloss, load_pretrain_checkpoint_path, save_finetune_checkpoint_path, epoch_num)
-
- if args_opt.do_eval.lower() == "true":
- if save_finetune_checkpoint_path == "":
- load_finetune_checkpoint_dir = _cur_dir
- else:
- load_finetune_checkpoint_dir = make_directory(save_finetune_checkpoint_path)
- load_finetune_checkpoint_path = LoadNewestCkpt(load_finetune_checkpoint_dir,
- ds.get_dataset_size(), epoch_num, "classifier")
-
- if args_opt.do_eval.lower() == "true":
- ds = create_classification_dataset(batch_size=args_opt.eval_batch_size, repeat_count=1,
- assessment_method=assessment_method,
- data_file_path=args_opt.eval_data_file_path,
- schema_file_path=args_opt.schema_file_path,
- do_shuffle=(args_opt.eval_data_shuffle.lower() == "true"))
- do_eval(ds, BertCLS, args_opt.num_class, assessment_method, load_finetune_checkpoint_path)
-
- if __name__ == "__main__":
- run_classifier()
|