You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

run_classifier.py 13 kB

5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. '''
  16. Bert finetune and evaluation script.
  17. '''
  18. import os
  19. import argparse
  20. from src.bert_for_finetune import BertFinetuneCell, BertCLS
  21. from src.finetune_eval_config import optimizer_cfg, bert_net_cfg
  22. from src.dataset import create_classification_dataset
  23. from src.assessment_method import Accuracy, F1, MCC, Spearman_Correlation
  24. from src.utils import make_directory, LossCallBack, LoadNewestCkpt, BertLearningRate
  25. import mindspore.common.dtype as mstype
  26. from mindspore import context
  27. from mindspore import log as logger
  28. from mindspore.nn.wrap.loss_scale import DynamicLossScaleUpdateCell
  29. from mindspore.nn.optim import AdamWeightDecay, Lamb, Momentum
  30. from mindspore.train.model import Model
  31. from mindspore.train.callback import CheckpointConfig, ModelCheckpoint, TimeMonitor
  32. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  33. _cur_dir = os.getcwd()
  34. def do_train(dataset=None, network=None, load_checkpoint_path="", save_checkpoint_path="", epoch_num=1):
  35. """ do train """
  36. if load_checkpoint_path == "":
  37. raise ValueError("Pretrain model missed, finetune task must load pretrain model!")
  38. steps_per_epoch = dataset.get_dataset_size()
  39. # optimizer
  40. if optimizer_cfg.optimizer == 'AdamWeightDecay':
  41. lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.AdamWeightDecay.learning_rate,
  42. end_learning_rate=optimizer_cfg.AdamWeightDecay.end_learning_rate,
  43. warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
  44. decay_steps=steps_per_epoch * epoch_num,
  45. power=optimizer_cfg.AdamWeightDecay.power)
  46. params = network.trainable_params()
  47. decay_params = list(filter(optimizer_cfg.AdamWeightDecay.decay_filter, params))
  48. other_params = list(filter(lambda x: not optimizer_cfg.AdamWeightDecay.decay_filter(x), params))
  49. group_params = [{'params': decay_params, 'weight_decay': optimizer_cfg.AdamWeightDecay.weight_decay},
  50. {'params': other_params, 'weight_decay': 0.0}]
  51. optimizer = AdamWeightDecay(group_params, lr_schedule, eps=optimizer_cfg.AdamWeightDecay.eps)
  52. elif optimizer_cfg.optimizer == 'Lamb':
  53. lr_schedule = BertLearningRate(learning_rate=optimizer_cfg.Lamb.learning_rate,
  54. end_learning_rate=optimizer_cfg.Lamb.end_learning_rate,
  55. warmup_steps=int(steps_per_epoch * epoch_num * 0.1),
  56. decay_steps=steps_per_epoch * epoch_num,
  57. power=optimizer_cfg.Lamb.power)
  58. optimizer = Lamb(network.trainable_params(), learning_rate=lr_schedule)
  59. elif optimizer_cfg.optimizer == 'Momentum':
  60. optimizer = Momentum(network.trainable_params(), learning_rate=optimizer_cfg.Momentum.learning_rate,
  61. momentum=optimizer_cfg.Momentum.momentum)
  62. else:
  63. raise Exception("Optimizer not supported. support: [AdamWeightDecay, Lamb, Momentum]")
  64. # load checkpoint into network
  65. ckpt_config = CheckpointConfig(save_checkpoint_steps=steps_per_epoch, keep_checkpoint_max=1)
  66. ckpoint_cb = ModelCheckpoint(prefix="classifier",
  67. directory=None if save_checkpoint_path == "" else save_checkpoint_path,
  68. config=ckpt_config)
  69. param_dict = load_checkpoint(load_checkpoint_path)
  70. load_param_into_net(network, param_dict)
  71. update_cell = DynamicLossScaleUpdateCell(loss_scale_value=2**32, scale_factor=2, scale_window=1000)
  72. netwithgrads = BertFinetuneCell(network, optimizer=optimizer, scale_update_cell=update_cell)
  73. model = Model(netwithgrads)
  74. callbacks = [TimeMonitor(dataset.get_dataset_size()), LossCallBack(dataset.get_dataset_size()), ckpoint_cb]
  75. model.train(epoch_num, dataset, callbacks=callbacks)
  76. def eval_result_print(assessment_method="accuracy", callback=None):
  77. """ print eval result """
  78. if assessment_method == "accuracy":
  79. print("acc_num {} , total_num {}, accuracy {:.6f}".format(callback.acc_num, callback.total_num,
  80. callback.acc_num / callback.total_num))
  81. elif assessment_method == "f1":
  82. print("Precision {:.6f} ".format(callback.TP / (callback.TP + callback.FP)))
  83. print("Recall {:.6f} ".format(callback.TP / (callback.TP + callback.FN)))
  84. print("F1 {:.6f} ".format(2 * callback.TP / (2 * callback.TP + callback.FP + callback.FN)))
  85. elif assessment_method == "mcc":
  86. print("MCC {:.6f} ".format(callback.cal()))
  87. elif assessment_method == "spearman_correlation":
  88. print("Spearman Correlation is {:.6f} ".format(callback.cal()[0]))
  89. else:
  90. raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]")
  91. def do_eval(dataset=None, network=None, num_class=2, assessment_method="accuracy", load_checkpoint_path=""):
  92. """ do eval """
  93. if load_checkpoint_path == "":
  94. raise ValueError("Finetune model missed, evaluation task must load finetune model!")
  95. net_for_pretraining = network(bert_net_cfg, False, num_class)
  96. net_for_pretraining.set_train(False)
  97. param_dict = load_checkpoint(load_checkpoint_path)
  98. load_param_into_net(net_for_pretraining, param_dict)
  99. model = Model(net_for_pretraining)
  100. if assessment_method == "accuracy":
  101. callback = Accuracy()
  102. elif assessment_method == "f1":
  103. callback = F1(False, num_class)
  104. elif assessment_method == "mcc":
  105. callback = MCC()
  106. elif assessment_method == "spearman_correlation":
  107. callback = Spearman_Correlation()
  108. else:
  109. raise ValueError("Assessment method not supported, support: [accuracy, f1, mcc, spearman_correlation]")
  110. columns_list = ["input_ids", "input_mask", "segment_ids", "label_ids"]
  111. for data in dataset.create_dict_iterator(num_epochs=1):
  112. input_data = []
  113. for i in columns_list:
  114. input_data.append(data[i])
  115. input_ids, input_mask, token_type_id, label_ids = input_data
  116. logits = model.predict(input_ids, input_mask, token_type_id, label_ids)
  117. callback.update(logits, label_ids)
  118. print("==============================================================")
  119. eval_result_print(assessment_method, callback)
  120. print("==============================================================")
  121. def run_classifier():
  122. """run classifier task"""
  123. parser = argparse.ArgumentParser(description="run classifier")
  124. parser.add_argument("--device_target", type=str, default="Ascend", choices=["Ascend", "GPU"],
  125. help="Device type, default is Ascend")
  126. parser.add_argument("--assessment_method", type=str, default="Accuracy",
  127. choices=["Mcc", "Spearman_correlation", "Accuracy", "F1"],
  128. help="assessment_method including [Mcc, Spearman_correlation, Accuracy, F1],\
  129. default is Accuracy")
  130. parser.add_argument("--do_train", type=str, default="false", choices=["true", "false"],
  131. help="Enable train, default is false")
  132. parser.add_argument("--do_eval", type=str, default="false", choices=["true", "false"],
  133. help="Enable eval, default is false")
  134. parser.add_argument("--device_id", type=int, default=0, help="Device id, default is 0.")
  135. parser.add_argument("--epoch_num", type=int, default=3, help="Epoch number, default is 3.")
  136. parser.add_argument("--num_class", type=int, default=2, help="The number of class, default is 2.")
  137. parser.add_argument("--train_data_shuffle", type=str, default="true", choices=["true", "false"],
  138. help="Enable train data shuffle, default is true")
  139. parser.add_argument("--eval_data_shuffle", type=str, default="false", choices=["true", "false"],
  140. help="Enable eval data shuffle, default is false")
  141. parser.add_argument("--train_batch_size", type=int, default=32, help="Train batch size, default is 32")
  142. parser.add_argument("--eval_batch_size", type=int, default=1, help="Eval batch size, default is 1")
  143. parser.add_argument("--save_finetune_checkpoint_path", type=str, default="", help="Save checkpoint path")
  144. parser.add_argument("--load_pretrain_checkpoint_path", type=str, default="", help="Load checkpoint file path")
  145. parser.add_argument("--load_finetune_checkpoint_path", type=str, default="", help="Load checkpoint file path")
  146. parser.add_argument("--train_data_file_path", type=str, default="",
  147. help="Data path, it is better to use absolute path")
  148. parser.add_argument("--eval_data_file_path", type=str, default="",
  149. help="Data path, it is better to use absolute path")
  150. parser.add_argument("--schema_file_path", type=str, default="",
  151. help="Schema path, it is better to use absolute path")
  152. args_opt = parser.parse_args()
  153. epoch_num = args_opt.epoch_num
  154. assessment_method = args_opt.assessment_method.lower()
  155. load_pretrain_checkpoint_path = args_opt.load_pretrain_checkpoint_path
  156. save_finetune_checkpoint_path = args_opt.save_finetune_checkpoint_path
  157. load_finetune_checkpoint_path = args_opt.load_finetune_checkpoint_path
  158. if args_opt.do_train.lower() == "false" and args_opt.do_eval.lower() == "false":
  159. raise ValueError("At least one of 'do_train' or 'do_eval' must be true")
  160. if args_opt.do_train.lower() == "true" and args_opt.train_data_file_path == "":
  161. raise ValueError("'train_data_file_path' must be set when do finetune task")
  162. if args_opt.do_eval.lower() == "true" and args_opt.eval_data_file_path == "":
  163. raise ValueError("'eval_data_file_path' must be set when do evaluation task")
  164. target = args_opt.device_target
  165. if target == "Ascend":
  166. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", device_id=args_opt.device_id)
  167. elif target == "GPU":
  168. context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
  169. if bert_net_cfg.compute_type != mstype.float32:
  170. logger.warning('GPU only support fp32 temporarily, run with fp32.')
  171. bert_net_cfg.compute_type = mstype.float32
  172. else:
  173. raise Exception("Target error, GPU or Ascend is supported.")
  174. netwithloss = BertCLS(bert_net_cfg, True, num_labels=args_opt.num_class, dropout_prob=0.1,
  175. assessment_method=assessment_method)
  176. if args_opt.do_train.lower() == "true":
  177. ds = create_classification_dataset(batch_size=args_opt.train_batch_size, repeat_count=1,
  178. assessment_method=assessment_method,
  179. data_file_path=args_opt.train_data_file_path,
  180. schema_file_path=args_opt.schema_file_path,
  181. do_shuffle=(args_opt.train_data_shuffle.lower() == "true"))
  182. do_train(ds, netwithloss, load_pretrain_checkpoint_path, save_finetune_checkpoint_path, epoch_num)
  183. if args_opt.do_eval.lower() == "true":
  184. if save_finetune_checkpoint_path == "":
  185. load_finetune_checkpoint_dir = _cur_dir
  186. else:
  187. load_finetune_checkpoint_dir = make_directory(save_finetune_checkpoint_path)
  188. load_finetune_checkpoint_path = LoadNewestCkpt(load_finetune_checkpoint_dir,
  189. ds.get_dataset_size(), epoch_num, "classifier")
  190. if args_opt.do_eval.lower() == "true":
  191. ds = create_classification_dataset(batch_size=args_opt.eval_batch_size, repeat_count=1,
  192. assessment_method=assessment_method,
  193. data_file_path=args_opt.eval_data_file_path,
  194. schema_file_path=args_opt.schema_file_path,
  195. do_shuffle=(args_opt.eval_data_shuffle.lower() == "true"))
  196. do_eval(ds, BertCLS, args_opt.num_class, assessment_method, load_finetune_checkpoint_path)
  197. if __name__ == "__main__":
  198. run_classifier()