|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175 |
- # Contents
-
- - [SRCNN Description](#srcnn-description)
- - [Model Architecture](#model-architecture)
- - [Dataset](#dataset)
- - [Environment Requirements](#environment-requirements)
- - [Quick Start](#quick-start)
- - [Script Description](#script-description)
- - [Script and Sample Code](#script-and-sample-code)
- - [Script Parameters](#script-parameters)
- - [Training Process](#training-process)
- - [Evaluation Process](#evaluation-process)
- - [Model Description](#model-description)
- - [Performance](#performance)
- - [Training Performance](#evaluation-performance)
- - [Inference Performance](#evaluation-performance)
- - [ModelZoo Homepage](#modelzoo-homepage)
-
- # [NASNet Description](#contents)
-
- SRCNN learns an end-to-end mapping between low- and high-resolution images, with little extra pre/post-processing beyond the optimization. With a lightweight structure, the SRCNN has achieved superior performance than the state-of-the-art methods.
-
- [Paper](https://arxiv.org/pdf/1501.00092.pdf): Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang. Image Super-Resolution Using Deep Convolutional Networks. 2014.
-
- # [Model architecture](#contents)
-
- The overall network architecture of SRCNN is show below:
-
- [Link](https://arxiv.org/pdf/1501.00092.pdf)
-
- # [Dataset](#contents)
-
- - Training Dataset
- - ILSVRC2013_DET_train: 395918 images, 200 classes
- - Evaluation Dataset
- - Set5: 5 images
- - Set14: 14 images
- - Set5 & Set14 download url: http://vllab.ucmerced.edu/wlai24/LapSRN/results/SR_testing_datasets.zip
- - BSDS200: 200 images
- - BSDS200 download url: http://vllab.ucmerced.edu/wlai24/LapSRN/results/SR_training_datasets.zip
- - Data format: RGB images.
- - Note: Data will be processed in src/dataset.py
-
- # [Environment Requirements](#contents)
-
- - Hardware GPU
- - Prepare hardware environment with GPU processor.
- - Framework
- - [MindSpore](https://www.mindspore.cn/install/en)
- - For more information, please check the resources below:
- - [MindSpore Tutorials](https://www.mindspore.cn/tutorial/training/en/master/index.html)
- - [MindSpore Python API](https://www.mindspore.cn/doc/api_python/en/master/index.html)
-
- # [Script description](#contents)
-
- ## [Script and sample code](#contents)
-
- ```python
- .
- └─srcnn
- ├─README.md
- ├─scripts
- ├─run_distribute_train_gpu.sh # launch distributed training with gpu platform
- └─run_eval_gpu.sh # launch evaluating with gpu platform
- ├─src
- ├─config.py # parameter configuration
- ├─dataset.py # data preprocessing
- ├─metric.py # accuracy metric
- ├─utils.py # some functions which is commonly used
- ├─srcnn.py # network definition
- ├─create_dataset.py # generating mindrecord training dataset
- ├─eval.py # eval net
- └─train.py # train net
-
- ```
-
- ## [Script Parameters](#contents)
-
- Parameters for both training and evaluating can be set in config.py.
-
- ```python
- 'lr': 1e-4, # learning rate
- 'patch_size': 33, # patch_size
- 'stride': 99, # stride
- 'scale': 2, # image scale
- 'epoch_size': 20, # total epoch numbers
- 'batch_size': 16, # input batchsize
- 'save_checkpoint': True, # whether saving ckpt file
- 'keep_checkpoint_max': 10, # max numbers to keep checkpoints
- 'save_checkpoint_path': 'outputs/' # save checkpoint path
- ```
-
- ## [Training Process](#contents)
-
- ### Dataset
-
- To create dataset, download the training dataset firstly and then convert them to mindrecord files. We can deal with it as follows.
-
- ```shell
- python create_dataset.py --src_folder=/dataset/ILSVRC2013_DET_train --output_folder=/dataset/mindrecord_dir
- ```
-
- ### Usage
-
- ```bash
- GPU:
- sh run_distribute_train_gpu.sh DEVICE_NUM VISIABLE_DEVICES(0,1,2,3,4,5,6,7) DATASET_PATH
- ```
-
- ### Launch
-
- ```bash
- # distributed training example(8p) for GPU
- sh run_distribute_train_gpu.sh 8 0,1,2,3,4,5,6,7 /dataset/train
- # standalone training example for GPU
- sh run_distribute_train_gpu.sh 1 0 /dataset/train
- ```
-
- You can find checkpoint file together with result in log.
-
- ## [Evaluation Process](#contents)
-
- ### Usage
-
- ```bash
- # Evaluation
- sh run_eval_gpu.sh DEVICE_ID DATASET_PATH CHECKPOINT_PATH
- ```
-
- ### Launch
-
- ```bash
- # Evaluation with checkpoint
- sh run_eval_gpu.sh 1 /dataset/val /ckpt_dir/srcnn-20_*.ckpt
- ```
-
- ### Result
-
- Evaluation result will be stored in the scripts path. Under this, you can find result like the followings in log.
-
- result {'PSNR': 36.72421418219669}
-
- # [Model description](#contents)
-
- ## [Performance](#contents)
-
- ### Training Performance
-
- | Parameters | SRCNN |
- | -------------------------- | ------------------------- |
- | Resource | NV PCIE V100-32G |
- | uploaded Date | 03/02/2021 |
- | MindSpore Version | master |
- | Dataset | ImageNet2013 scale:2 |
- | Training Parameters | src/config.py |
- | Optimizer | Adam |
- | Loss Function | MSELoss |
- | Loss | 0.00179 |
- | Total time | 1 h 8ps |
- | Checkpoint for Fine tuning | 671 K(.ckpt file) |
-
- ### Inference Performance
-
- | Parameters | |
- | -------------------------- | -------------------------- |
- | Resource | NV PCIE V100-32G |
- | uploaded Date | 03/02/2021 |
- | MindSpore Version | master |
- | Dataset | Set5/Set14/BSDS200 scale:2 |
- | batch_size | 1 |
- | PSNR | 36.72/32.58/33.81 |
-
- # [ModelZoo Homepage](#contents)
-
- Please check the official [homepage](https://gitee.com/mindspore/mindspore/tree/master/model_zoo).
|