You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 6.7 kB

4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train resnet."""
  16. import os
  17. import argparse
  18. import ast
  19. from mindspore import context
  20. from mindspore import Tensor
  21. from mindspore.nn.optim.momentum import Momentum
  22. from mindspore.train.model import Model
  23. from mindspore.context import ParallelMode
  24. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  25. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  26. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  27. from mindspore.communication.management import init, get_rank
  28. from mindspore.common import set_seed
  29. import mindspore.nn as nn
  30. import mindspore.common.initializer as weight_init
  31. from src.lr_generator import get_lr
  32. from src.CrossEntropySmooth import CrossEntropySmooth
  33. from src.resnet import resnet152 as resnet
  34. from src.config import config5 as config
  35. from src.dataset import create_dataset2 as create_dataset # imagenet2012
  36. parser = argparse.ArgumentParser(description='Image classification--resnet152')
  37. parser.add_argument('--data_url', type=str, default=None, help='Dataset path')
  38. parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Run distribute')
  39. parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
  40. parser.add_argument('--rank', type=int, default=0, help='local rank of distributed')
  41. parser.add_argument('--is_save_on_master', type=ast.literal_eval, default=True, help='save ckpt on master or all rank')
  42. args_opt = parser.parse_args()
  43. set_seed(1)
  44. if __name__ == '__main__':
  45. ckpt_save_dir = config.save_checkpoint_path
  46. # init context
  47. print(args_opt.run_distribute)
  48. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
  49. if args_opt.run_distribute:
  50. device_id = int(os.getenv('DEVICE_ID'))
  51. rank_size = int(os.environ.get("RANK_SIZE", 1))
  52. print(rank_size)
  53. device_num = rank_size
  54. context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
  55. context.set_auto_parallel_context(device_num=device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  56. gradients_mean=True, all_reduce_fusion_config=[180, 313])
  57. init()
  58. args_opt.rank = get_rank()
  59. print(args_opt.rank)
  60. # select for master rank save ckpt or all rank save, compatible for model parallel
  61. args_opt.rank_save_ckpt_flag = 0
  62. if args_opt.is_save_on_master:
  63. if args_opt.rank == 0:
  64. args_opt.rank_save_ckpt_flag = 1
  65. else:
  66. args_opt.rank_save_ckpt_flag = 1
  67. local_data_path = args_opt.data_url
  68. local_data_path = args_opt.data_url
  69. print('Download data:')
  70. # create dataset
  71. dataset = create_dataset(dataset_path=local_data_path, do_train=True, repeat_num=1,
  72. batch_size=config.batch_size, target="Ascend", distribute=args_opt.run_distribute)
  73. step_size = dataset.get_dataset_size()
  74. print("step"+str(step_size))
  75. # define net
  76. net = resnet(class_num=config.class_num)
  77. # init weight
  78. if args_opt.pre_trained:
  79. param_dict = load_checkpoint(args_opt.pre_trained)
  80. load_param_into_net(net, param_dict)
  81. else:
  82. for _, cell in net.cells_and_names():
  83. if isinstance(cell, nn.Conv2d):
  84. cell.weight.set_data(weight_init.initializer(weight_init.HeUniform(),
  85. cell.weight.shape,
  86. cell.weight.dtype))
  87. if isinstance(cell, nn.Dense):
  88. cell.weight.set_data(weight_init.initializer(weight_init.HeNormal(),
  89. cell.weight.shape,
  90. cell.weight.dtype))
  91. # init lr
  92. lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
  93. warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
  94. lr_decay_mode=config.lr_decay_mode)
  95. lr = Tensor(lr)
  96. # define opt
  97. decayed_params = []
  98. no_decayed_params = []
  99. for param in net.trainable_params():
  100. if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
  101. decayed_params.append(param)
  102. else:
  103. no_decayed_params.append(param)
  104. group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
  105. {'params': no_decayed_params},
  106. {'order_params': net.trainable_params()}]
  107. opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
  108. # define loss, model
  109. if not config.use_label_smooth:
  110. config.label_smooth_factor = 0.0
  111. loss = CrossEntropySmooth(sparse=True, reduction="mean",
  112. smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  113. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  114. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale,
  115. metrics={'top_1_accuracy', 'top_5_accuracy'},
  116. amp_level="O3", keep_batchnorm_fp32=False)
  117. # define callbacks
  118. time_cb = TimeMonitor(data_size=step_size)
  119. loss_cb = LossMonitor()
  120. cb = [time_cb, loss_cb]
  121. if config.save_checkpoint:
  122. if args_opt.rank_save_ckpt_flag:
  123. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  124. keep_checkpoint_max=config.keep_checkpoint_max)
  125. ckpt_cb = ModelCheckpoint(prefix="resnet152", directory=ckpt_save_dir, config=config_ck)
  126. cb += [ckpt_cb]
  127. # train model
  128. dataset_sink_mode = True
  129. print(dataset.get_dataset_size())
  130. model.train(config.epoch_size, dataset, callbacks=cb,
  131. sink_size=dataset.get_dataset_size(), dataset_sink_mode=dataset_sink_mode)