You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 7.6 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. # Licensed under the Apache License, Version 2.0 (the "License");
  3. # you may not use this file except in compliance with the License.
  4. # You may obtain a copy of the License at
  5. # http://www.apache.org/licenses/LICENSE-2.0
  6. # Unless required by applicable law or agreed to in writing, software
  7. # distributed under the License is distributed on an "AS IS" BASIS,
  8. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  9. # See the License for the specific language governing permissions and
  10. # limitations under the License.
  11. # ============================================================================
  12. import os
  13. import argparse
  14. import mindspore
  15. from mindspore import context
  16. from mindspore.context import ParallelMode
  17. from mindspore.communication.management import init, get_rank, get_group_size
  18. from mindspore.train import Model
  19. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, TimeMonitor
  20. from mindspore.nn.optim import Adam, Momentum
  21. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  22. from src.dataset import create_dataset
  23. from src.openposenet import OpenPoseNet
  24. from src.loss import openpose_loss, BuildTrainNetwork, TrainOneStepWithClipGradientCell
  25. from src.config import params
  26. from src.utils import get_lr, load_model, MyLossMonitor
  27. context.set_context(mode=context.GRAPH_MODE, device_target="Ascend", save_graphs=False)
  28. parser = argparse.ArgumentParser('mindspore openpose training')
  29. parser.add_argument('--train_dir', type=str, default='train2017', help='train data dir')
  30. parser.add_argument('--train_ann', type=str, default='person_keypoints_train2017.json',
  31. help='train annotations json')
  32. parser.add_argument('--group_size', type=int, default=1, help='world size of distributed')
  33. args, _ = parser.parse_known_args()
  34. args.jsonpath_train = os.path.join(params['data_dir'], 'annotations/' + args.train_ann)
  35. args.imgpath_train = os.path.join(params['data_dir'], args.train_dir)
  36. args.maskpath_train = os.path.join(params['data_dir'], 'ignore_mask_train')
  37. def train():
  38. """Train function."""
  39. args.outputs_dir = params['save_model_path']
  40. if args.group_size > 1:
  41. init()
  42. context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
  43. gradients_mean=True)
  44. args.outputs_dir = os.path.join(args.outputs_dir, "ckpt_{}/".format(str(get_rank())))
  45. args.rank = get_rank()
  46. else:
  47. args.outputs_dir = os.path.join(args.outputs_dir, "ckpt_0/")
  48. args.rank = 0
  49. if args.group_size > 1:
  50. args.max_epoch = params["max_epoch_train_NP"]
  51. args.loss_scale = params['loss_scale'] / 2
  52. args.lr_steps = list(map(int, params["lr_steps_NP"].split(',')))
  53. params['train_type'] = params['train_type_NP']
  54. params['optimizer'] = params['optimizer_NP']
  55. params['group_params'] = params['group_params_NP']
  56. else:
  57. args.max_epoch = params["max_epoch_train"]
  58. args.loss_scale = params['loss_scale']
  59. args.lr_steps = list(map(int, params["lr_steps"].split(',')))
  60. # create network
  61. print('start create network')
  62. criterion = openpose_loss()
  63. criterion.add_flags_recursive(fp32=True)
  64. network = OpenPoseNet(vggpath=params['vgg_path'], vgg_with_bn=params['vgg_with_bn'])
  65. if params["load_pretrain"]:
  66. print("load pretrain model:", params["pretrained_model_path"])
  67. load_model(network, params["pretrained_model_path"])
  68. train_net = BuildTrainNetwork(network, criterion)
  69. # create dataset
  70. if os.path.exists(args.jsonpath_train) and os.path.exists(args.imgpath_train) \
  71. and os.path.exists(args.maskpath_train):
  72. print('start create dataset')
  73. else:
  74. print('Error: wrong data path')
  75. return 0
  76. num_worker = 20 if args.group_size > 1 else 48
  77. de_dataset_train = create_dataset(args.jsonpath_train, args.imgpath_train, args.maskpath_train,
  78. batch_size=params['batch_size'],
  79. rank=args.rank,
  80. group_size=args.group_size,
  81. num_worker=num_worker,
  82. multiprocessing=True,
  83. shuffle=True,
  84. repeat_num=1)
  85. steps_per_epoch = de_dataset_train.get_dataset_size()
  86. print("steps_per_epoch: ", steps_per_epoch)
  87. # lr scheduler
  88. lr_stage, lr_base, lr_vgg = get_lr(params['lr'] * args.group_size,
  89. params['lr_gamma'],
  90. steps_per_epoch,
  91. args.max_epoch,
  92. args.lr_steps,
  93. args.group_size,
  94. lr_type=params['lr_type'],
  95. warmup_epoch=params['warmup_epoch'])
  96. # optimizer
  97. if params['group_params']:
  98. vgg19_base_params = list(filter(lambda x: 'base.vgg_base' in x.name, train_net.trainable_params()))
  99. base_params = list(filter(lambda x: 'base.conv' in x.name, train_net.trainable_params()))
  100. stages_params = list(filter(lambda x: 'base' not in x.name, train_net.trainable_params()))
  101. group_params = [{'params': vgg19_base_params, 'lr': lr_vgg},
  102. {'params': base_params, 'lr': lr_base},
  103. {'params': stages_params, 'lr': lr_stage}]
  104. if params['optimizer'] == "Momentum":
  105. opt = Momentum(group_params, learning_rate=lr_stage, momentum=0.9)
  106. elif params['optimizer'] == "Adam":
  107. opt = Adam(group_params)
  108. else:
  109. raise ValueError("optimizer not support.")
  110. else:
  111. if params['optimizer'] == "Momentum":
  112. opt = Momentum(train_net.trainable_params(), learning_rate=lr_stage, momentum=0.9)
  113. elif params['optimizer'] == "Adam":
  114. opt = Adam(train_net.trainable_params(), learning_rate=lr_stage)
  115. else:
  116. raise ValueError("optimizer not support.")
  117. # callback
  118. config_ck = CheckpointConfig(save_checkpoint_steps=params['ckpt_interval'],
  119. keep_checkpoint_max=params["keep_checkpoint_max"])
  120. ckpoint_cb = ModelCheckpoint(prefix='{}'.format(args.rank), directory=args.outputs_dir, config=config_ck)
  121. time_cb = TimeMonitor(data_size=de_dataset_train.get_dataset_size())
  122. if args.rank == 0:
  123. callback_list = [MyLossMonitor(), time_cb, ckpoint_cb]
  124. else:
  125. callback_list = [MyLossMonitor(), time_cb]
  126. # train
  127. if params['train_type'] == 'clip_grad':
  128. train_net = TrainOneStepWithClipGradientCell(train_net, opt, sens=args.loss_scale)
  129. train_net.set_train()
  130. model = Model(train_net)
  131. elif params['train_type'] == 'fix_loss_scale':
  132. loss_scale_manager = FixedLossScaleManager(args.loss_scale, drop_overflow_update=False)
  133. train_net.set_train()
  134. model = Model(train_net, optimizer=opt, loss_scale_manager=loss_scale_manager)
  135. else:
  136. raise ValueError("Type {} is not support.".format(params['train_type']))
  137. print("============== Starting Training ==============")
  138. model.train(args.max_epoch, de_dataset_train, callbacks=callback_list,
  139. dataset_sink_mode=False)
  140. return 0
  141. if __name__ == "__main__":
  142. mindspore.common.seed.set_seed(1)
  143. train()