You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 8.3 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """DPN model train with MindSpore"""
  16. import os
  17. import argparse
  18. from mindspore import context
  19. from mindspore import Tensor
  20. from mindspore.nn import SGD
  21. from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
  22. from mindspore.train.model import Model
  23. from mindspore.context import ParallelMode
  24. from mindspore.train.callback import LossMonitor, ModelCheckpoint, CheckpointConfig, TimeMonitor
  25. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  26. from mindspore.communication.management import init, get_group_size, get_rank
  27. from mindspore.common import set_seed
  28. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  29. from src.imagenet_dataset import classification_dataset
  30. from src.dpn import dpns
  31. from src.config import config
  32. from src.lr_scheduler import get_lr_drop, get_lr_warmup
  33. from src.crossentropy import CrossEntropy
  34. from src.callbacks import SaveCallback
  35. device_id = int(os.getenv('DEVICE_ID'))
  36. set_seed(1)
  37. def parse_args():
  38. """parameters"""
  39. parser = argparse.ArgumentParser('dpn training')
  40. # dataset related
  41. parser.add_argument('--data_dir', type=str, default='', help='Imagenet data dir')
  42. # network related
  43. parser.add_argument('--pretrained', default='', type=str, help='ckpt path to load')
  44. # distributed related
  45. parser.add_argument('--is_distributed', type=int, default=1, help='if multi device')
  46. parser.add_argument('--ckpt_path', type=str, default='', help='ckpt path to save')
  47. parser.add_argument('--eval_each_epoch', type=int, default=0, help='evaluate on each epoch')
  48. args, _ = parser.parse_known_args()
  49. args.image_size = config.image_size
  50. args.num_classes = config.num_classes
  51. args.lr_init = config.lr_init
  52. args.lr_max = config.lr_max
  53. args.factor = config.factor
  54. args.global_step = config.global_step
  55. args.epoch_number_to_drop = config.epoch_number_to_drop
  56. args.epoch_size = config.epoch_size
  57. args.warmup_epochs = config.warmup_epochs
  58. args.weight_decay = config.weight_decay
  59. args.momentum = config.momentum
  60. args.batch_size = config.batch_size
  61. args.num_parallel_workers = config.num_parallel_workers
  62. args.backbone = config.backbone
  63. args.loss_scale_num = config.loss_scale_num
  64. args.is_save_on_master = config.is_save_on_master
  65. args.rank = config.rank
  66. args.group_size = config.group_size
  67. args.dataset = config.dataset
  68. args.label_smooth = config.label_smooth
  69. args.label_smooth_factor = config.label_smooth_factor
  70. args.keep_checkpoint_max = config.keep_checkpoint_max
  71. args.lr_schedule = config.lr_schedule
  72. return args
  73. def dpn_train(args):
  74. # init context
  75. context.set_context(mode=context.GRAPH_MODE,
  76. device_target="Ascend", save_graphs=False, device_id=device_id)
  77. # init distributed
  78. if args.is_distributed:
  79. init()
  80. args.rank = get_rank()
  81. args.group_size = get_group_size()
  82. context.set_auto_parallel_context(device_num=args.group_size, parallel_mode=ParallelMode.DATA_PARALLEL,
  83. gradients_mean=True)
  84. # select for master rank save ckpt or all rank save, compatible for model parallel
  85. args.rank_save_ckpt_flag = 0
  86. if args.is_save_on_master:
  87. if args.rank == 0:
  88. args.rank_save_ckpt_flag = 1
  89. else:
  90. args.rank_save_ckpt_flag = 1
  91. # create dataset
  92. args.train_dir = os.path.join(args.data_dir, 'train')
  93. args.eval_dir = os.path.join(args.data_dir, 'val')
  94. train_dataset = classification_dataset(args.train_dir,
  95. image_size=args.image_size,
  96. per_batch_size=args.batch_size,
  97. max_epoch=1,
  98. num_parallel_workers=args.num_parallel_workers,
  99. shuffle=True,
  100. rank=args.rank,
  101. group_size=args.group_size)
  102. if args.eval_each_epoch:
  103. print("create eval_dataset")
  104. eval_dataset = classification_dataset(args.eval_dir,
  105. image_size=args.image_size,
  106. per_batch_size=args.batch_size,
  107. max_epoch=1,
  108. num_parallel_workers=args.num_parallel_workers,
  109. shuffle=False,
  110. rank=args.rank,
  111. group_size=args.group_size,
  112. mode='eval')
  113. train_step_size = train_dataset.get_dataset_size()
  114. # choose net
  115. net = dpns[args.backbone](num_classes=args.num_classes)
  116. # load checkpoint
  117. if os.path.isfile(args.pretrained):
  118. print("load ckpt")
  119. load_param_into_net(net, load_checkpoint(args.pretrained))
  120. # learing rate schedule
  121. if args.lr_schedule == 'drop':
  122. print("lr_schedule:drop")
  123. lr = Tensor(get_lr_drop(global_step=args.global_step,
  124. total_epochs=args.epoch_size,
  125. steps_per_epoch=train_step_size,
  126. lr_init=args.lr_init,
  127. factor=args.factor))
  128. elif args.lr_schedule == 'warmup':
  129. print("lr_schedule:warmup")
  130. lr = Tensor(get_lr_warmup(global_step=args.global_step,
  131. total_epochs=args.epoch_size,
  132. steps_per_epoch=train_step_size,
  133. lr_init=args.lr_init,
  134. lr_max=args.lr_max,
  135. warmup_epochs=args.warmup_epochs))
  136. # optimizer
  137. opt = SGD(net.trainable_params(),
  138. lr,
  139. momentum=args.momentum,
  140. weight_decay=args.weight_decay,
  141. loss_scale=args.loss_scale_num)
  142. # loss scale
  143. loss_scale = FixedLossScaleManager(args.loss_scale_num, False)
  144. # loss function
  145. if args.dataset == "imagenet-1K":
  146. print("Use SoftmaxCrossEntropyWithLogits")
  147. loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
  148. else:
  149. if not args.label_smooth:
  150. args.label_smooth_factor = 0.0
  151. print("Use Label_smooth CrossEntropy")
  152. loss = CrossEntropy(smooth_factor=args.label_smooth_factor, num_classes=args.num_classes)
  153. # create model
  154. model = Model(net, amp_level="O2",
  155. keep_batchnorm_fp32=False,
  156. loss_fn=loss,
  157. optimizer=opt,
  158. loss_scale_manager=loss_scale,
  159. metrics={'top_1_accuracy', 'top_5_accuracy'})
  160. # loss/time monitor & ckpt save callback
  161. loss_cb = LossMonitor()
  162. time_cb = TimeMonitor(data_size=train_step_size)
  163. cb = [loss_cb, time_cb]
  164. if args.rank_save_ckpt_flag:
  165. if args.eval_each_epoch:
  166. save_cb = SaveCallback(model, eval_dataset, args.ckpt_path)
  167. cb += [save_cb]
  168. else:
  169. config_ck = CheckpointConfig(save_checkpoint_steps=train_step_size,
  170. keep_checkpoint_max=args.keep_checkpoint_max)
  171. ckpoint_cb = ModelCheckpoint(prefix="dpn", directory=args.ckpt_path, config=config_ck)
  172. cb.append(ckpoint_cb)
  173. # train model
  174. model.train(args.epoch_size, train_dataset, callbacks=cb)
  175. if __name__ == '__main__':
  176. dpn_train(parse_args())
  177. print('DPN training success!')