You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

export.py 2.9 kB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768
  1. # Copyright 2020-2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """export checkpoint file into air, onnx, mindir models"""
  16. import argparse
  17. import numpy as np
  18. from mindspore.common import dtype as mstype
  19. from mindspore import context, Tensor
  20. from mindspore.train.serialization import export, load_checkpoint, load_param_into_net
  21. parser = argparse.ArgumentParser(description="densenet export")
  22. parser.add_argument("--net", type=str, default='', help="Densenet Model, densenet100 or densenet121")
  23. parser.add_argument("--device_id", type=int, default=0, help="Device id")
  24. parser.add_argument("--batch_size", type=int, default=32, help="batch size")
  25. parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.")
  26. parser.add_argument("--file_name", type=str, default="densenet", help="output file name.")
  27. parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format")
  28. parser.add_argument("--device_target", type=str, choices=["Ascend", "GPU", "CPU"], default="Ascend",
  29. help="device target")
  30. args = parser.parse_args()
  31. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target)
  32. if args.device_target == "Ascend":
  33. context.set_context(device_id=args.device_id)
  34. if args.net == "densenet100":
  35. from src.config import config_100 as config
  36. from src.network.densenet import DenseNet100 as DenseNet
  37. else:
  38. from src.config import config_121 as config
  39. from src.network.densenet import DenseNet121 as DenseNet
  40. if __name__ == "__main__":
  41. network = DenseNet(config.num_classes)
  42. param_dict = load_checkpoint(args.ckpt_file)
  43. param_dict_new = {}
  44. for key, value in param_dict.items():
  45. if key.startswith("moments."):
  46. continue
  47. elif key.startswith("network."):
  48. param_dict_new[key[8:]] = value
  49. else:
  50. param_dict_new[key] = value
  51. load_param_into_net(network, param_dict_new)
  52. network.add_flags_recursive(fp16=True)
  53. network.set_train(False)
  54. shape = [int(args.batch_size), 3] + [int(config.image_size.split(",")[0]), int(config.image_size.split(",")[1])]
  55. input_data = Tensor(np.zeros(shape), mstype.float32)
  56. export(network, input_data, file_name=args.file_name, file_format=args.file_format)