You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

eval.py 10 kB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271
  1. # Copyright 2020-2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """
  16. ##############test densenet example#################
  17. python eval.py --net densenet121 --dataset imagenet --data_dir /PATH/TO/DATASET --pretrained /PATH/TO/CHECKPOINT
  18. """
  19. import os
  20. import argparse
  21. import datetime
  22. import glob
  23. import numpy as np
  24. from mindspore import context
  25. import mindspore.nn as nn
  26. from mindspore import Tensor
  27. from mindspore.communication.management import init, get_rank, get_group_size, release
  28. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  29. from mindspore.ops import operations as P
  30. from mindspore.ops import functional as F
  31. from mindspore.common import dtype as mstype
  32. from src.utils.logging import get_logger
  33. class ParameterReduce(nn.Cell):
  34. """
  35. reduce parameter
  36. """
  37. def __init__(self):
  38. super(ParameterReduce, self).__init__()
  39. self.cast = P.Cast()
  40. self.reduce = P.AllReduce()
  41. def construct(self, x):
  42. one = self.cast(F.scalar_to_array(1.0), mstype.float32)
  43. out = x * one
  44. ret = self.reduce(out)
  45. return ret
  46. def parse_args(cloud_args=None):
  47. """
  48. parse args
  49. """
  50. parser = argparse.ArgumentParser('mindspore classification test')
  51. # network and dataset choices
  52. parser.add_argument('--net', type=str, default='', help='Densenet Model, densenet100 or densenet121')
  53. parser.add_argument('--dataset', type=str, default='', help='Dataset, either cifar10 or imagenet')
  54. # dataset related
  55. parser.add_argument('--data_dir', type=str, default='', help='eval data dir')
  56. # network related
  57. parser.add_argument('--backbone', default='resnet50', help='backbone')
  58. parser.add_argument('--pretrained', default='', type=str, help='fully path of pretrained model to load.'
  59. 'If it is a direction, it will test all ckpt')
  60. # logging related
  61. parser.add_argument('--log_path', type=str, default='outputs/', help='path to save log')
  62. parser.add_argument('--is_distributed', type=int, default=1, help='if multi device')
  63. parser.add_argument('--rank', type=int, default=0, help='local rank of distributed')
  64. parser.add_argument('--group_size', type=int, default=1, help='world size of distributed')
  65. # roma obs
  66. parser.add_argument('--train_url', type=str, default="", help='train url')
  67. # platform
  68. parser.add_argument('--device_target', type=str, default='Ascend', choices=('Ascend', 'GPU', 'CPU'),
  69. help='device target')
  70. args, _ = parser.parse_known_args()
  71. args = merge_args(args, cloud_args)
  72. if args.net == "densenet100":
  73. from src.config import config_100 as config
  74. else:
  75. from src.config import config_121 as config
  76. args.per_batch_size = config.per_batch_size
  77. args.image_size = config.image_size
  78. args.num_classes = config.num_classes
  79. args.image_size = list(map(int, args.image_size.split(',')))
  80. return args
  81. def get_top5_acc(top5_arg, gt_class):
  82. sub_count = 0
  83. for top5, gt in zip(top5_arg, gt_class):
  84. if gt in top5:
  85. sub_count += 1
  86. return sub_count
  87. def merge_args(args, cloud_args):
  88. """
  89. merge args and cloud_args
  90. """
  91. args_dict = vars(args)
  92. if isinstance(cloud_args, dict):
  93. for key in cloud_args.keys():
  94. val = cloud_args[key]
  95. if key in args_dict and val:
  96. arg_type = type(args_dict[key])
  97. if arg_type is not type(None):
  98. val = arg_type(val)
  99. args_dict[key] = val
  100. return args
  101. def generate_results(model, rank, group_size, top1_correct, top5_correct, img_tot):
  102. model_md5 = model.replace('/', '')
  103. tmp_dir = '../cache'
  104. if not os.path.exists(tmp_dir):
  105. os.mkdir(tmp_dir)
  106. top1_correct_npy = '{}/top1_rank_{}_{}.npy'.format(tmp_dir, rank, model_md5)
  107. top5_correct_npy = '{}/top5_rank_{}_{}.npy'.format(tmp_dir, rank, model_md5)
  108. img_tot_npy = '{}/img_tot_rank_{}_{}.npy'.format(tmp_dir, rank, model_md5)
  109. np.save(top1_correct_npy, top1_correct)
  110. np.save(top5_correct_npy, top5_correct)
  111. np.save(img_tot_npy, img_tot)
  112. while True:
  113. rank_ok = True
  114. for other_rank in range(group_size):
  115. top1_correct_npy = '{}/top1_rank_{}_{}.npy'.format(tmp_dir, other_rank, model_md5)
  116. top5_correct_npy = '{}/top5_rank_{}_{}.npy'.format(tmp_dir, other_rank, model_md5)
  117. img_tot_npy = '{}/img_tot_rank_{}_{}.npy'.format(tmp_dir, other_rank, model_md5)
  118. if not os.path.exists(top1_correct_npy) or not os.path.exists(top5_correct_npy) \
  119. or not os.path.exists(img_tot_npy):
  120. rank_ok = False
  121. if rank_ok:
  122. break
  123. top1_correct_all = 0
  124. top5_correct_all = 0
  125. img_tot_all = 0
  126. for other_rank in range(group_size):
  127. top1_correct_npy = '{}/top1_rank_{}_{}.npy'.format(tmp_dir, other_rank, model_md5)
  128. top5_correct_npy = '{}/top5_rank_{}_{}.npy'.format(tmp_dir, other_rank, model_md5)
  129. img_tot_npy = '{}/img_tot_rank_{}_{}.npy'.format(tmp_dir, other_rank, model_md5)
  130. top1_correct_all += np.load(top1_correct_npy)
  131. top5_correct_all += np.load(top5_correct_npy)
  132. img_tot_all += np.load(img_tot_npy)
  133. return [[top1_correct_all], [top5_correct_all], [img_tot_all]]
  134. def test(cloud_args=None):
  135. """
  136. network eval function. Get top1 and top5 ACC from classification for imagenet,
  137. and top1 ACC for cifar10.
  138. The result will be save at [./outputs] by default.
  139. """
  140. args = parse_args(cloud_args)
  141. context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target,
  142. save_graphs=True)
  143. if args.device_target == 'Ascend':
  144. devid = int(os.getenv('DEVICE_ID'))
  145. context.set_context(device_id=devid)
  146. # init distributed
  147. if args.is_distributed:
  148. init()
  149. args.rank = get_rank()
  150. args.group_size = get_group_size()
  151. args.outputs_dir = os.path.join(args.log_path,
  152. datetime.datetime.now().strftime('%Y-%m-%d_time_%H_%M_%S'))
  153. args.logger = get_logger(args.outputs_dir, args.rank)
  154. args.logger.save_args(args)
  155. # network
  156. args.logger.important_info('start create network')
  157. if os.path.isdir(args.pretrained):
  158. models = list(glob.glob(os.path.join(args.pretrained, '*.ckpt')))
  159. f = lambda x: -1 * int(os.path.splitext(os.path.split(x)[-1])[0].split('-')[-1].split('_')[0])
  160. args.models = sorted(models, key=f)
  161. else:
  162. args.models = [args.pretrained,]
  163. if args.net == "densenet100":
  164. from src.network.densenet import DenseNet100 as DenseNet
  165. else:
  166. from src.network.densenet import DenseNet121 as DenseNet
  167. if args.dataset == "cifar10":
  168. from src.datasets import classification_dataset_cifar10 as classification_dataset
  169. else:
  170. from src.datasets import classification_dataset_imagenet as classification_dataset
  171. for model in args.models:
  172. de_dataset = classification_dataset(args.data_dir, image_size=args.image_size,
  173. per_batch_size=args.per_batch_size,
  174. max_epoch=1, rank=args.rank, group_size=args.group_size,
  175. mode='eval')
  176. eval_dataloader = de_dataset.create_tuple_iterator()
  177. network = DenseNet(args.num_classes)
  178. param_dict = load_checkpoint(model)
  179. param_dict_new = {}
  180. for key, values in param_dict.items():
  181. if key.startswith('moments.'):
  182. continue
  183. elif key.startswith('network.'):
  184. param_dict_new[key[8:]] = values
  185. else:
  186. param_dict_new[key] = values
  187. load_param_into_net(network, param_dict_new)
  188. args.logger.info('load model {} success'.format(model))
  189. if args.device_target == 'Ascend':
  190. network.add_flags_recursive(fp16=True)
  191. img_tot = 0
  192. top1_correct = 0
  193. top5_correct = 0
  194. network.set_train(False)
  195. for data, gt_classes in eval_dataloader:
  196. output = network(Tensor(data, mstype.float32))
  197. output = output.asnumpy()
  198. gt_classes = gt_classes.asnumpy()
  199. top1_output = np.argmax(output, (-1))
  200. top5_output = np.argsort(output)[:, -5:]
  201. t1_correct = np.equal(top1_output, gt_classes).sum()
  202. top1_correct += t1_correct
  203. top5_correct += get_top5_acc(top5_output, gt_classes)
  204. img_tot += args.per_batch_size
  205. results = [[top1_correct], [top5_correct], [img_tot]]
  206. args.logger.info('before results={}'.format(results))
  207. if args.is_distributed:
  208. results = generate_results(model, args.rank, args.group_size, top1_correct,
  209. top5_correct, img_tot)
  210. results = np.array(results)
  211. else:
  212. results = np.array(results)
  213. args.logger.info('after results={}'.format(results))
  214. top1_correct = results[0, 0]
  215. top5_correct = results[1, 0]
  216. img_tot = results[2, 0]
  217. acc1 = 100.0 * top1_correct / img_tot
  218. acc5 = 100.0 * top5_correct / img_tot
  219. args.logger.info('after allreduce eval: top1_correct={}, tot={}, acc={:.2f}%'.format(top1_correct, img_tot,
  220. acc1))
  221. if args.dataset == 'imagenet':
  222. args.logger.info('after allreduce eval: top5_correct={}, tot={}, acc={:.2f}%'.format(top5_correct, img_tot,
  223. acc5))
  224. if args.is_distributed:
  225. release()
  226. if __name__ == "__main__":
  227. test()