You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 6.2 kB

4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
4 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138
  1. # Copyright 2021 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train FCN8s."""
  16. import os
  17. import argparse
  18. from mindspore import context, Tensor
  19. from mindspore.train.model import Model
  20. from mindspore.context import ParallelMode
  21. import mindspore.nn as nn
  22. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig
  23. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  24. from mindspore.communication.management import init, get_rank, get_group_size
  25. from mindspore.train.callback import LossMonitor, TimeMonitor
  26. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  27. from mindspore.common import set_seed
  28. from src.data import dataset as data_generator
  29. from src.loss import loss
  30. from src.utils.lr_scheduler import CosineAnnealingLR
  31. from src.nets.FCN8s import FCN8s
  32. from src.config import FCN8s_VOC2012_cfg
  33. set_seed(1)
  34. def parse_args():
  35. parser = argparse.ArgumentParser('mindspore FCN training')
  36. parser.add_argument('--device_id', type=int, default=0, help='device id of GPU or Ascend. (Default: None)')
  37. args, _ = parser.parse_known_args()
  38. return args
  39. def train():
  40. args = parse_args()
  41. cfg = FCN8s_VOC2012_cfg
  42. device_num = int(os.environ.get("DEVICE_NUM", 1))
  43. context.set_context(mode=context.GRAPH_MODE, enable_auto_mixed_precision=True, save_graphs=False,
  44. device_target="Ascend", device_id=args.device_id)
  45. # init multicards training
  46. args.rank = 0
  47. args.group_size = 1
  48. if device_num > 1:
  49. parallel_mode = ParallelMode.DATA_PARALLEL
  50. context.set_auto_parallel_context(parallel_mode=parallel_mode, gradients_mean=True, device_num=device_num)
  51. init()
  52. args.rank = get_rank()
  53. args.group_size = get_group_size()
  54. # dataset
  55. dataset = data_generator.SegDataset(image_mean=cfg.image_mean,
  56. image_std=cfg.image_std,
  57. data_file=cfg.data_file,
  58. batch_size=cfg.batch_size,
  59. crop_size=cfg.crop_size,
  60. max_scale=cfg.max_scale,
  61. min_scale=cfg.min_scale,
  62. ignore_label=cfg.ignore_label,
  63. num_classes=cfg.num_classes,
  64. num_readers=2,
  65. num_parallel_calls=4,
  66. shard_id=args.rank,
  67. shard_num=args.group_size)
  68. dataset = dataset.get_dataset(repeat=1)
  69. net = FCN8s(n_class=cfg.num_classes)
  70. loss_ = loss.SoftmaxCrossEntropyLoss(cfg.num_classes, cfg.ignore_label)
  71. # load pretrained vgg16 parameters to init FCN8s
  72. if cfg.ckpt_vgg16:
  73. param_vgg = load_checkpoint(cfg.ckpt_vgg16)
  74. param_dict = {}
  75. for layer_id in range(1, 6):
  76. sub_layer_num = 2 if layer_id < 3 else 3
  77. for sub_layer_id in range(sub_layer_num):
  78. # conv param
  79. y_weight = 'conv{}.{}.weight'.format(layer_id, 3 * sub_layer_id)
  80. x_weight = 'vgg16_feature_extractor.conv{}_{}.0.weight'.format(layer_id, sub_layer_id + 1)
  81. param_dict[y_weight] = param_vgg[x_weight]
  82. # BatchNorm param
  83. y_gamma = 'conv{}.{}.gamma'.format(layer_id, 3 * sub_layer_id + 1)
  84. y_beta = 'conv{}.{}.beta'.format(layer_id, 3 * sub_layer_id + 1)
  85. x_gamma = 'vgg16_feature_extractor.conv{}_{}.1.gamma'.format(layer_id, sub_layer_id + 1)
  86. x_beta = 'vgg16_feature_extractor.conv{}_{}.1.beta'.format(layer_id, sub_layer_id + 1)
  87. param_dict[y_gamma] = param_vgg[x_gamma]
  88. param_dict[y_beta] = param_vgg[x_beta]
  89. load_param_into_net(net, param_dict)
  90. # load pretrained FCN8s
  91. elif cfg.ckpt_pre_trained:
  92. param_dict = load_checkpoint(cfg.ckpt_pre_trained)
  93. load_param_into_net(net, param_dict)
  94. # optimizer
  95. iters_per_epoch = dataset.get_dataset_size()
  96. lr_scheduler = CosineAnnealingLR(cfg.base_lr,
  97. cfg.train_epochs,
  98. iters_per_epoch,
  99. cfg.train_epochs,
  100. warmup_epochs=0,
  101. eta_min=0)
  102. lr = Tensor(lr_scheduler.get_lr())
  103. # loss scale
  104. manager_loss_scale = FixedLossScaleManager(cfg.loss_scale, drop_overflow_update=False)
  105. optimizer = nn.Momentum(params=net.trainable_params(), learning_rate=lr, momentum=0.9, weight_decay=0.0001,
  106. loss_scale=cfg.loss_scale)
  107. model = Model(net, loss_fn=loss_, loss_scale_manager=manager_loss_scale, optimizer=optimizer, amp_level="O3")
  108. # callback for saving ckpts
  109. time_cb = TimeMonitor(data_size=iters_per_epoch)
  110. loss_cb = LossMonitor()
  111. cbs = [time_cb, loss_cb]
  112. if args.rank == 0:
  113. config_ck = CheckpointConfig(save_checkpoint_steps=cfg.save_steps,
  114. keep_checkpoint_max=cfg.keep_checkpoint_max)
  115. ckpoint_cb = ModelCheckpoint(prefix=cfg.model, directory=cfg.ckpt_dir, config=config_ck)
  116. cbs.append(ckpoint_cb)
  117. model.train(cfg.train_epochs, dataset, callbacks=cbs)
  118. if __name__ == '__main__':
  119. train()