You can not select more than 25 topics Topics must start with a chinese character,a letter or number, can include dashes ('-') and can be up to 35 characters long.

train.py 8.0 kB

5 years ago
5 years ago
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164
  1. # Copyright 2020 Huawei Technologies Co., Ltd
  2. #
  3. # Licensed under the Apache License, Version 2.0 (the "License");
  4. # you may not use this file except in compliance with the License.
  5. # You may obtain a copy of the License at
  6. #
  7. # http://www.apache.org/licenses/LICENSE-2.0
  8. #
  9. # Unless required by applicable law or agreed to in writing, software
  10. # distributed under the License is distributed on an "AS IS" BASIS,
  11. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  12. # See the License for the specific language governing permissions and
  13. # limitations under the License.
  14. # ============================================================================
  15. """train mobilenet_v1."""
  16. import os
  17. import argparse
  18. import ast
  19. from mindspore import context
  20. from mindspore import Tensor
  21. from mindspore.nn.optim.momentum import Momentum
  22. from mindspore.train.model import Model
  23. from mindspore.context import ParallelMode
  24. from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor
  25. from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits
  26. from mindspore.train.loss_scale_manager import FixedLossScaleManager
  27. from mindspore.train.serialization import load_checkpoint, load_param_into_net
  28. from mindspore.communication.management import init, get_rank, get_group_size
  29. from mindspore.common import set_seed
  30. import mindspore.nn as nn
  31. import mindspore.common.initializer as weight_init
  32. from src.lr_generator import get_lr
  33. from src.CrossEntropySmooth import CrossEntropySmooth
  34. from src.mobilenet_v1 import mobilenet_v1 as mobilenet
  35. parser = argparse.ArgumentParser(description='Image classification')
  36. parser.add_argument('--dataset', type=str, default=None, help='Dataset, either cifar10 or imagenet2012')
  37. parser.add_argument('--run_distribute', type=ast.literal_eval, default=False, help='Run distribute')
  38. parser.add_argument('--device_num', type=int, default=1, help='Device num.')
  39. parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path')
  40. parser.add_argument('--device_target', type=str, default='Ascend', help='Device target')
  41. parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path')
  42. parser.add_argument('--parameter_server', type=ast.literal_eval, default=False, help='Run parameter server train')
  43. args_opt = parser.parse_args()
  44. set_seed(1)
  45. if args_opt.dataset == 'cifar10':
  46. from src.config import config1 as config
  47. from src.dataset import create_dataset1 as create_dataset
  48. else:
  49. from src.config import config2 as config
  50. from src.dataset import create_dataset2 as create_dataset
  51. if __name__ == '__main__':
  52. target = args_opt.device_target
  53. ckpt_save_dir = config.save_checkpoint_path
  54. # init context
  55. context.set_context(mode=context.GRAPH_MODE, device_target=target, save_graphs=False)
  56. if args_opt.parameter_server:
  57. context.set_ps_context(enable_ps=True)
  58. if args_opt.run_distribute:
  59. if target == "Ascend":
  60. device_id = int(os.getenv('DEVICE_ID'))
  61. context.set_context(device_id=device_id, enable_auto_mixed_precision=True)
  62. context.set_auto_parallel_context(device_num=args_opt.device_num, parallel_mode=ParallelMode.DATA_PARALLEL,
  63. gradients_mean=True)
  64. init()
  65. context.set_auto_parallel_context(all_reduce_fusion_config=[75])
  66. # GPU target
  67. else:
  68. init()
  69. context.set_auto_parallel_context(device_num=get_group_size(), parallel_mode=ParallelMode.DATA_PARALLEL,
  70. gradients_mean=True)
  71. ckpt_save_dir = config.save_checkpoint_path + "ckpt_" + str(get_rank()) + "/"
  72. # create dataset
  73. dataset = create_dataset(dataset_path=args_opt.dataset_path, do_train=True, repeat_num=1,
  74. batch_size=config.batch_size, target=target)
  75. step_size = dataset.get_dataset_size()
  76. # define net
  77. net = mobilenet(class_num=config.class_num)
  78. if args_opt.parameter_server:
  79. net.set_param_ps()
  80. # init weight
  81. if args_opt.pre_trained:
  82. param_dict = load_checkpoint(args_opt.pre_trained)
  83. load_param_into_net(net, param_dict)
  84. else:
  85. for _, cell in net.cells_and_names():
  86. if isinstance(cell, nn.Conv2d):
  87. cell.weight.set_data(weight_init.initializer(weight_init.XavierUniform(),
  88. cell.weight.shape,
  89. cell.weight.dtype))
  90. if isinstance(cell, nn.Dense):
  91. cell.weight.set_data(weight_init.initializer(weight_init.TruncatedNormal(),
  92. cell.weight.shape,
  93. cell.weight.dtype))
  94. # init lr
  95. lr = get_lr(lr_init=config.lr_init, lr_end=config.lr_end, lr_max=config.lr_max,
  96. warmup_epochs=config.warmup_epochs, total_epochs=config.epoch_size, steps_per_epoch=step_size,
  97. lr_decay_mode=config.lr_decay_mode)
  98. lr = Tensor(lr)
  99. # define opt
  100. decayed_params = []
  101. no_decayed_params = []
  102. for param in net.trainable_params():
  103. if 'beta' not in param.name and 'gamma' not in param.name and 'bias' not in param.name:
  104. decayed_params.append(param)
  105. else:
  106. no_decayed_params.append(param)
  107. group_params = [{'params': decayed_params, 'weight_decay': config.weight_decay},
  108. {'params': no_decayed_params},
  109. {'order_params': net.trainable_params()}]
  110. opt = Momentum(group_params, lr, config.momentum, loss_scale=config.loss_scale)
  111. # define loss, model
  112. if target == "Ascend":
  113. if args_opt.dataset == "imagenet2012":
  114. if not config.use_label_smooth:
  115. config.label_smooth_factor = 0.0
  116. loss = CrossEntropySmooth(sparse=True, reduction="mean",
  117. smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  118. else:
  119. loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction='mean')
  120. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  121. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
  122. amp_level="O2", keep_batchnorm_fp32=False)
  123. else:
  124. # GPU target
  125. if args_opt.dataset == "imagenet2012":
  126. if not config.use_label_smooth:
  127. config.label_smooth_factor = 0.0
  128. loss = CrossEntropySmooth(sparse=True, reduction="mean",
  129. smooth_factor=config.label_smooth_factor, num_classes=config.class_num)
  130. else:
  131. loss = SoftmaxCrossEntropyWithLogits(sparse=True, reduction="mean")
  132. opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, config.weight_decay,
  133. config.loss_scale)
  134. loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False)
  135. # Mixed precision
  136. model = Model(net, loss_fn=loss, optimizer=opt, loss_scale_manager=loss_scale, metrics={'acc'},
  137. amp_level="O2", keep_batchnorm_fp32=False)
  138. # define callbacks
  139. time_cb = TimeMonitor(data_size=step_size)
  140. loss_cb = LossMonitor()
  141. cb = [time_cb, loss_cb]
  142. if config.save_checkpoint:
  143. config_ck = CheckpointConfig(save_checkpoint_steps=config.save_checkpoint_epochs * step_size,
  144. keep_checkpoint_max=config.keep_checkpoint_max)
  145. ckpt_cb = ModelCheckpoint(prefix="mobilenetv1", directory=ckpt_save_dir, config=config_ck)
  146. cb += [ckpt_cb]
  147. # train model
  148. model.train(config.epoch_size - config.pretrain_epoch_size, dataset, callbacks=cb,
  149. sink_size=dataset.get_dataset_size(), dataset_sink_mode=(not args_opt.parameter_server))