|
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131 |
- # BERT Example
- ## Description
- This example implements pre-training, fine-tuning and evaluation of [BERT-base](https://github.com/google-research/bert)(the base version of BERT model) and [BERT-NEZHA](https://github.com/huawei-noah/Pretrained-Language-Model)(a Chinese pretrained language model developed by Huawei, which introduced a improvement of Functional Relative Positional Encoding as an effective positional encoding scheme).
-
- ## Requirements
- - Install [MindSpore](https://www.mindspore.cn/install/en).
- - Download the zhwiki dataset from <https://dumps.wikimedia.org/zhwiki> for pre-training. Extract and clean text in the dataset with [WikiExtractor](https://github.com/attardi/wiliextractor). Convert the dataset to TFRecord format and move the files to a specified path.
- - Download the CLUE dataset from <https://www.cluebenchmarks.com> for fine-tuning and evaluation.
- > Notes:
- If you are running a fine-tuning or evaluation task, prepare the corresponding checkpoint file.
-
- ## Running the Example
- ### Pre-Training
- - Set options in `config.py`. Make sure the 'DATA_DIR'(path to the dataset) and 'SCHEMA_DIR'(path to the json schema file) are set to your own path. Click [here](https://www.mindspore.cn/tutorial/zh-CN/master/use/data_preparation/loading_the_datasets.html#tfrecord) for more information about dataset and the json schema file.
-
- - Run `run_pretrain.py` for pre-training of BERT-base and BERT-NEZHA model.
-
- ``` bash
- python run_pretrain.py --backend=ms
- ```
-
- ### Fine-Tuning
- - Set options in `finetune_config.py`. Make sure the 'data_file', 'schema_file' and 'ckpt_file' are set to your own path, set the 'pre_training_ckpt' to save the checkpoint files generated.
-
- - Run `finetune.py` for fine-tuning of BERT-base and BERT-NEZHA model.
-
- ```bash
- python finetune.py --backend=ms
- ```
-
- ### Evaluation
- - Set options in `evaluation_config.py`. Make sure the 'data_file', 'schema_file' and 'finetune_ckpt' are set to your own path.
-
- - Run `evaluation.py` for evaluation of BERT-base and BERT-NEZHA model.
-
- ```bash
- python evaluation.py --backend=ms
- ```
-
- ## Usage
- ### Pre-Training
- ```
- usage: run_pretrain.py [--backend BACKEND]
-
- optional parameters:
- --backend, BACKEND MindSpore backend: ms
- ```
-
- ## Options and Parameters
- It contains of parameters of BERT model and options for training, which is set in file `config.py`, `finetune_config.py` and `evaluation_config.py` respectively.
- ### Options:
- ```
- Pre-Training:
- bert_network version of BERT model: base | large, default is base
- epoch_size repeat counts of training: N, default is 40
- dataset_sink_mode use dataset sink mode or not: True | False, default is True
- do_shuffle shuffle the dataset or not: True | False, default is True
- do_train_with_lossscale use lossscale or not: True | False, default is True
- loss_scale_value initial value of loss scale: N, default is 2^32
- scale_factor factor used to update loss scale: N, default is 2
- scale_window steps for once updatation of loss scale: N, default is 1000
- save_checkpoint_steps steps to save a checkpoint: N, default is 2000
- keep_checkpoint_max numbers to save checkpoint: N, default is 1
- init_ckpt checkpoint file to load: PATH, default is ""
- data_dir dataset file to load: PATH, default is "/your/path/cn-wiki-128"
- schema_dir dataset schema file to load: PATH, default is "your/path/datasetSchema.json"
- optimizer optimizer used in the network: AdamWerigtDecayDynamicLR | Lamb | Momentum, default is "Lamb"
-
- Fine-Tuning:
- task task type: NER | XNLI | LCQMC | SENTI
- data_file dataset file to load: PATH, default is "/your/path/cn-wiki-128"
- schema_file dataset schema file to load: PATH, default is "/your/path/datasetSchema.json"
- epoch_num repeat counts of training: N, default is 40
- ckpt_prefix prefix used to save checkpoint files: PREFIX, default is "bert"
- ckpt_dir path to save checkpoint files: PATH, default is None
- pre_training_ckpt checkpoint file to load: PATH, default is "/your/path/pre_training.ckpt"
- optimizer optimizer used in the network: AdamWeigtDecayDynamicLR | Lamb | Momentum, default is "Lamb"
-
- Evaluation:
- task task type: NER | XNLI | LCQMC | SENTI
- data_file dataset file to load: PATH, default is "/your/path/evaluation.tfrecord"
- schema_file dataset schema file to load: PATH, default is "/your/path/schema.json"
- finetune_ckpt checkpoint file to load: PATH, default is "/your/path/your.ckpt"
- ```
-
- ### Parameters:
- ```
- Parameters for dataset and network (Pre-Training/Fine-Tuning/Evaluation):
- batch_size batch size of input dataset: N, default is 16
- seq_length length of input sequence: N, default is 128
- vocab_size size of each embedding vector: N, default is 21136
- hidden_size size of bert encoder layers: N, default is 768
- num_hidden_layers number of hidden layers: N, default is 12
- num_attention_heads number of attention heads: N, default is 12
- intermediate_size size of intermediate layer: N, default is 3072
- hidden_act activation function used: ACTIVATION, default is "gelu"
- hidden_dropout_prob dropout probability for BertOutput: Q, default is 0.1
- attention_probs_dropout_prob dropout probability for BertAttention: Q, default is 0.1
- max_position_embeddings maximum length of sequences: N, default is 512
- type_vocab_size size of token type vocab: N, default is 16
- initializer_range initialization value of TruncatedNormal: Q, default is 0.02
- use_relative_positions use relative positions or not: True | False, default is False
- input_mask_from_dataset use the input mask loaded form dataset or not: True | False, default is True
- token_type_ids_from_dataset use the token type ids loaded from dataset or not: True | False, default is True
- dtype data type of input: mstype.float16 | mstype.float32, default is mstype.float32
- compute_type compute type in BertTransformer: mstype.float16 | mstype.float32, default is mstype.float16
-
- Parameters for optimizer:
- AdamWeightDecayDynamicLR:
- decay_steps steps of the learning rate decay: N, default is 12276*3
- learning_rate value of learning rate: Q, default is 1e-5
- end_learning_rate value of end learning rate: Q, default is 0.0
- power power: Q, default is 10.0
- warmup_steps steps of the learning rate warm up: N, default is 2100
- weight_decay weight decay: Q, default is 1e-5
- eps term added to the denominator to improve numerical stability: Q, default is 1e-6
-
- Lamb:
- decay_steps steps of the learning rate decay: N, default is 12276*3
- learning_rate value of learning rate: Q, default is 1e-5
- end_learning_rate value of end learning rate: Q, default is 0.0
- power power: Q, default is 5.0
- warmup_steps steps of the learning rate warm up: N, default is 2100
- weight_decay weight decay: Q, default is 1e-5
- decay_filter function to determine whether to apply weight decay on parameters: FUNCTION, default is lambda x: False
-
- Momentum:
- learning_rate value of learning rate: Q, default is 2e-5
- momentum momentum for the moving average: Q, default is 0.9
- ```
-
|